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Supervisory Professor:  James M. Reuben, Ph.D. 

ABSTRACT 

Inflammatory breast cancer (IBC) is the most insidious form of locally advanced disease.  

Although rare and less than 2% of all breast cancer, IBC is responsible for up to 10% of 

all breast cancer deaths.  Despite the name, very little is known about the role of 

inflammation or immune mediators in IBC. Therefore, we analyzed blood samples from 

IBC patients and non-IBC patients, as well as healthy donor controls to establish an IBC-

specific profile of peripheral blood leukocyte phenotype and function of T cells and 

dendritic cells and serum inflammatory cytokines.   

 

Emerging evidence suggests that host factors in the microenviromement may interact 

with underlying IBC genetics to promote the aggressive nature of the tumor.  An integral 

part of the metastatic process involves epithelial to mesenchymal transition (EMT) where 

primary breast cancer cells gain motility and stem cell-like features that allow distant 

seeding. Interestingly, the IBC consortium microarray data found no clear evidence for 

EMT in IBC tumor tissues.  It is becoming increasingly evident that inflammatory factors 

can induce EMT.  However, it is unknown if EMT-inducing soluble factors secreted by 

activated immune cells in the IBC microenvironment canπ account for the absence of 
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EMT in studies of the tumor cells themselves.   We hypothesized that soluble factors 

from immune cells are capable of inducing EMT in IBC.   

 

We tested the ability of immune conditioned media to induce EMT in IBC cells.  We 

found that soluble factors from activated immune cells are able to induce the expression 

of EMT-related factors in IBC cells along with increased migration and invasion.  

Specifically, the pro-inflammatory cytokines TNF-α, IL-6 and TGF-β were able to 

induce EMT and blocking these factors in conditioned media abated the induction of 

EMT.  Surprisingly, unique to IBC cells, this process was related to increased levels of E-

cadherin expression and adhesion, reminiscent of the characteristic tightly packed tumor 

emboli seen in IBC samples.   

 

 This data offers insight into the unique pathology of IBC by suggesting that tumor 

immune interactions in the tumor microenvironment contribute to the aggressive nature 

of IBC implying that immune induced inflammation can be a novel therapeutic target. 

Specifically, we showed that soluble factors secreted by activated immune cells are 

capable of inducing EMT in IBC cells and may mediate the persistent E-cadherin 

expression observed in IBC.  This data suggests that immune mediated inflammation may 

contribute to the highly aggressive nature of IBC and represents a potential therapeutic 

target that warrants further investigation.  
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TEXT 

 

Chapter 1: Introduction 

Inflammatory Breast Cancer
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 2 

 

THE DISEASE 

Breast cancer claims the lives of more than 39,000 women in the United States 

every year and is the leading cause of death among American women aged 45-55.  Over 

232,000 women in the United States are diagnosed with breast cancer every year and for 

most women, cancers confined to the breast are highly survivable. As with most cancers, 

breast cancer mortality results from metastatic disease.  Inflammatory breast cancer (IBC) 

is the most insidious form of locally advanced breast cancer and while defined as a local 

entity, it rapidly progresses to metastasis and has a very poor prognosis.  However, the 

role of inflammation in inflammatory breast cancer is poorly understood.   

 IBC was first described in 1814 by Sir Charles Bell as “a purple color on 

the skin over the tumor accompanied by shooting pain” (1) although pain is infrequently 

associated with disease progression (2).  Lee and Tannenbaum first published the term 

“inflammatory carcinoma of the breast” in 1924 (3).  The first diagnostic criteria for IBC 

were published by Haagensem in 1956 (4).  A similar disease, “rapidly progressing breast 

cancer” (poussée évolutive) has been described, particularly in Tunisia and northern 

Africa, and has formed the basis of much of the etiological studies of IBC (5).  

Unfortunately, recent reviews suggest that these cases may not be true IBC and therefore 

our understanding of IBC is limited.    

IBC usually affects women 50-55 years old.  This demographic is slightly 

younger than patients with non-IBC.  In contrast to IBC, lactation associated mastitis, a 

common differential diagnosis, tends to afflict women of a slightly younger age.  

Common findings on mammography are skin thickening, diffusely increased breast 

density, and trabecular thickening but are often reported as negative contributing to 

delayed diagnosis (2).  
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The histologic hallmark of IBC is dermal lymphatic invasion (DLI) of tumor 

emboli that retract away from the endothelial lining (6).  However, pathologic evidence 

of dermal lymphatic involvement is not required for diagnosis as negative results may be 

due to sampling errors.  Additionally, lymphatic tumor emboli may be observed in non-

Hodgkin’s lymphoma (7) and non-inflammatory breast cancer (8).  It is important to note 

that inflammatory breast cancer is primarily a clinical diagnosis according to the 

American Joint Committee on Cancer (AJCC) staging manual (9). 

IBC is a separate entity from other non-inflammatory locally advanced breast 

cancers (LABC).  According to the Surveillance, Epidemiology and End Results (SEER) 

Program database, IBC median survival is 2.9 years vs. 6.4 years for LABC (10).  

Suggesting a unique genetic background, blacks have at least 50% higher incidence than 

whites and are diagnosed at an earlier age (11).  In contrast to non-IBC, women with 

aggressive breast cancer are more likely to have had a younger age of first parity (11).  A 

high body mass index (BMI) is associated with IBC in both premenopausal and 

postmenopausal women.  Interestingly, BMI is only associated with increased non-IBC 

breast cancer only in pre-menopausal women (11).  

Three types of IBC are recognized: primary, secondary and occult (12).  Primary 

IBC arises as a new malignant tumor.  In contrast, inflammation that develops later in the 

course of cancer progression is referred to as secondary IBC.  Occult was first defined by 

Salzstein in 4 patients (13).  IBC is not limited to any specific histologic type.  

Pathologists usually report a poorly a differentiated ductal carcinoma, but IBC also can 

be lobular, medullary, colloid carcinoma or comedo-type ductal carcinoma in situ 

(DCIS).  Notably, locally advanced breast cancer, which also involves dermal penetration 

but lacks dermal lymphatic involvement of IBC, is very often medullary or medullary-

like (12). 
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According to the SEER database, IBC presents with more ER negative disease 

than non-IBC and is frequently Her2 amplified or mutated (10).  In addition to the typical 

breast cancer prognostic markers, several other pathways have been implicated in IBC 

including E-cadherin, Muc1, and RhoC (14) and p53 is frequently mutated (15). 

E-cadherin is a calcium dependent transmembrane glycoprotein that mediates 

homotypic adhesion between epithelial cells (16).  Loss of E-cadherin expression is 

associated with the epithelial to mesenchymal transition (17) and is generally a poor 

prognostic factor in breast caner (18).  In IBC, however, E-cadherin expression is 

maintained (19) and is up-regulated in IBC models (20).  The clusters of tumor cells that 

comprise the lymphatic emboli characteristic of IBC are maintained through E-cadherin 

interactions.  Sanford Barsky’s lab showed that anti-E-cadherin would cause dissolution 

of tumor emboli in the Mary-X IBC mouse model (20).  Therefore, E-cadherin is thought 

to be a unique factor in IBC. 

STEM CELLS 

The Marry-X model exhibits “florid lymphovascular invasion” (21) and expresses 

stem cell-like phenotypes in culture including stellar, rex-1, nestin, H19, oct-4, nanog, 

sox-2, CD44+CD24-/low, ALDH1, and CD133 but not CD34 (22).  Notably, the authors 

claim that non-IBC breast cancer cells lines do not express CD133. 

Aldehyde dehydrogenase (ALDH) activity is involved in the metabolism of 

retinoic acid which signals through the retinoic acid receptor to maintain cells in a stem 

cell-like undifferentiated state (23).  ALDH activity may contribute to the therapy 

resistant properties (24) of stem cells.  Furthermore, ALDH1 expression has recently 

been shown to be a poor prognostic factor in breast cancer (25).  In this paper, the authors 

describe a fluorescence-based technology that allows easy identification of the aldehyde 
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expressing cells by a bright fluorescence of the proprietary agent Aldefluor (ALDHbr).  

Although ALDH1 is typically thought to be the most influential isoform of ALDH in 

stem cell maintenance, Charafe-Jauffret et al note that different isoforms of ALDH1 

contribute to the ALDHbr population (26).  In IBC, aldehyde and alcohol metabolism 

pathways were found to be upregulated in IBC vs. non-IBC in a pathway analysis of 

Affimetrix chip data from tumor epithelium laser capture microdissection (27).  

Therefore stem cell signaling through ALDH may play a critical role in the biology of 

IBC.   

INFLAMMATION IN IBC 

There is much debate over whether the inflammatory features observed in 

inflammatory breast cancer represent a true inflammatory process.  Inflammation is 

traditionally defined by the Latin rubric: calor, dolor, rubor and tumor, meaning “heat, 

pain, redness, and swelling.”  Each of these is normally attributed to the action of local 

inflammatory cytokines released in response to a pathologic process (28).  However, in 

IBC, current consensus contends that inflammation is caused by a continuous growth of 

tumor cells within the lymphatic (and occasionally venous) vessels that eventually blocks 

all drainage from the tissue resulting in the edema.  Inflammatory cellular infiltrates are 

limited to lymphocytes and monocytes invading the perivascular area in response to the 

lymphatic blockage.  Other leukocytes such as neutrophils, eosinophil and mast cells are 

not commonly seen in IBC (12).  While these leukocytes are seen around the periphery, 

inflammatory cells are rarely reported in the tumor field (29).  Most of the reviews of 

leukocytic infiltrates in IBC are anecdotal and a clear consensus is hard to establish.  

Unfortunately, although a thorough review of leukocytic infiltrates in IBC has not been 

published, it is beyond the scope of the current study. 
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As IBC presents with inflammatory features in the breast, it can be easily 

confused with mastitis, an acute inflammation of the breast that is almost exclusively 

associated with lactation.  The skin overlying a mastitis-related abscess is typically 

smooth and shiny whereas IBC presents with the characteristic peau d’orange or orange-

peel skin.  Mastitis related inflammation quickly resolves or progresses to abscess and 

can be readily treated with antibiotics (12).  

As secretion of cytokines is one of the defining hallmarks of inflammation, 

several studies have examined cytokines in model systems and patient material.  Stephen 

Ethier’s group in Michigan developed the SUM149 cell line from an aggressive 

inflammatory breast cancer (30) and showed that it produces IL-1α and IL-1β in response 

to autocrine amphiregulin stimulation of epidermal growth factor receptor (EGFR) (31).  

However, Sofia Merajver’s group from the same instuition has unpublished data 

suggesting that IBC tumors produce “negligible levels” of IL-1 (8).  Similarly, Bièche et 

al found similar expression levels of inflammatory cytokine mRNA in IBC and LABC 

(32).  In this study, Bièche et al performed RT-PCR analysis of 538 genes in 36 IBC and 

22 LABC samples collected over 7 years from one institution in France and found similar 

levels of interleukin (IL)-1α,  IL-1β,   IL-6, IL-8, IL-10, interferon (IFN)-γ, and tumor 

necrosis factor (TNF)-α.  However, IL-6 expression was 9.3 times higher in IBC than 

LABC.  Additionally, they reported increased expression of Cox-2.  It is worth noting 

that this was a small study and although ER was found to be less frequently expressed in 

IBC, as expected, they study did not find expression differences in the other pathways 

most frequently associated with IBC including E-cadherin, Ras homolog gene family, 

member C GTPase (RhoC) or WNT1-inducible-signaling pathway protein 3 (Wisp3, as 

known as CCN6).  Further reverse transcription-polymerase chain reaction (RT-PCR) 
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analysis of the same sample set found that 35 of 60 (58%) NF-κB pathway related genes 

were up-regulated in IBC (33).   

The transcription factor NF-κB is a critical in regulator of inflammation.  The IL-

1 receptor is highly homologous to the NF-κB inducing Toll-like receptors (TLR) that are 

conserved from drosophila to humans (34) and there is a positive feedback loop between 

IL-1 and NF-κB activation where each induces activation of the other.  Gene chip studies 

at MD Anderson have shown that expression of IL-1β mRNA is significantly higher in 

IBC cell lines than in non-IBC MCF-7.  Additional NF-κB dependent genes such as 

CXCL1 were also unregulated in IBC.  The inflammatory intermediary Cox-2 is highly 

expressed in the IBC cell line SUM149 relative to non-IBC cell lines (35). 

Although the clinical indications of inflammation in IBC seem to be primarily 

related to blockage of dermal lymphatic vessels, this research has shown that sub-cellular 

inflammatory signaling including Cox-2 and NF-κB is highly prevalent in the SUM149 

model cell line.  

MODEL SYSTEMS 

 Inflammatory Breast Cancer is defined by its clinical and pathological 

presentation, there is no current molecular determinant.  As such model systems are a bit 

limited in their ability to fully recapitulate the disease.  A limited number of cell lines 

derived from patients with confirmed IBC are available and these serve as the basis for 

most in vitro work.  Stephen Ethier’s group in Michigan developed the SUM149PT and 

SUM190PT cell lines from the primary tumors of patients diagnosed with aggressive 

inflammatory breast cancer (30).  The SUM190 cell line harbors a chromosomal 

amplification of the Her2/neu oncogene whereas the SUM149 is triple receptor negative 

and lacks expression of the three primary breast cancer prognostic markers: ER, 
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progesterone receptor (PR) and the epithelial growth factor receptor family member 

Her2.  Such triple receptor negative breast cancers (TNBC) (sometimes referred to as 

basal-like) are often highly aggressive and it can be difficult to know if SUM149 is 

modeling IBC behavior or TNBC behavior. Several additional Her2+ IBC cell lines exist 

including KPL4 and a cell line recently developed at MD Anderson, IBC-3(36). The 

MARYX model is a human IBC cell line that is passaged through murine xenografts.  

The model recapitulates the tumor emboli so common in IBC, however the cell line is not 

readily available. van Golen’s group has been describing an in vitro a model that can 

mimic the oscillating interstitial fluid pressure within the lymphatics (37).  

 

IMMUNOLOGY 

IMMUNOLOGY AND BREAST CANCER 

Tumor Infiltrating Leukocytes 

 Most studies of tumor leukocytic infiltrates in breast cancer rely on single color 

stains.   Ruffell et al compared malignant breast tissue, non-adjacent normal breast tissue 

and peripheral blood as a control using several multi-parameter techniques in a small 

series of 20 breast cancer patients.  They reported that activated T-cells constitute the 

largest proportion of infiltrating leukocytes in the tumors of chemotherapy naïve patients.  

In these samples, macrophages are rare in the tumor but more common in the non-

adjacent normal tissue.  In contrast, myeloid cells are more common in the malignant 

tissue of patients, post-chemotherapy (38).  

IMMUNOLOGY AND IBC 

Immunological studies of inflammatory breast cancer are limited.  After anecdotal 

reports of immune suppression in French breast cancer patients diagnosed with poussée 
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évolutive (PEV) or rapidly progressing breast cancer, Levin et al. used delayed 

hypersensitivity skin tests (5) and in vitro cellular immunity tests (39) to study immunity 

in PEV patients in Tunisia.  In both studies, the authors found almost no difference 

between PEV+ and PEV- patients with respect to tumor antigen, recall antigen, and 

mitogen (phytohemaglutinin A or Concanavalin A) stimulation.  Unfortunately, 

diagnostic criteria used in these studies were not based on the current definition of IBC, 

making interpretation of these data difficult (40). 

About the same time, immunotherapy trials using Bacillus Calmette-Guerin 

(BCG) as an adjuvant were conducted in breast cancer patients (41).  A long-term follow-

up of IBC patients vaccinated with allogeneic tumor + BCG found 4 of 13 patients (31%) 

were still alive after 10 years (42).  Interestingly, Pogo et al. have reported that 

components of a human virus very similar to mouse mammary tumor virus (MMTV) are 

present in IBC patients (43).  This is highly intriguing for a number of reasons including 

1) MMTV is a well known mammary oncogene that is frequently used as a model for 

breast cancer in mice and 2) it suggests an immune aspect to IBC.  Unfortunately, the 

MMTV data are yet to be confirmed.  Additionally, there is a single case report from 

1994 that notes a reconstitution of immune parameters following administration of 

subcutaneous IL-2 (44). Recent anecdotal evidence suggested that there is a high 

prevalence of viral infection in IBC.  Overall the literature is very thin and a basic 

understanding of immune competence in IBC is needed.   

MOLECULAR SIGNALING 

Recent research has suggested that several signaling pathways contribute to the 

unique aggressive nature of inflammatory breast cancer.  Similar to other breast tumors, 

p53 and Her2 are frequently mutated in IBC (45).   More unique to IBC is an increased 
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expression of the oncogene RhoC GTPase, the cell adhesion molecules E-cadherin and 

MUC-1 and loss of the tumor suppressor Wnt-1 induced secreted protein 3 (WISP-3, also 

known as “lost in IBC”) (46, 47).  Furthermore, IBC tends to be highly vascularized (47) 

with higher levels of vascular endothelial growth factor (VEGF) than non-inflammatory 

breast cancer (48). 

The tumor suppressor p53 is often called the “guardian of the genome” due to its 

ability to prevent replication of damaged DNA (49).  Moll et al. found that p53 

dysfunction in IBC occurs by two major mechanisms.  The authors found that in p53 

positive samples with nuclear localization, the protein was impaired by a variety of 

missense mutations.  In contrast, wild type p53 was found in IBC patients who were p53 

negative or with cyoplasmically localized tumors.  Therefore, the authors proposed that 

missense mutation and nuclear exclusion are the primary mechanisms of p53 alteration 

IBC (50). 

Over-expression of E-cadherin is an interesting phenomenon in IBC.  E cadherin 

helps anchor epithelial cells together.  In epithelial cancers, E-cadherin is typically lost in 

malignant progression as its down-regulation is associated with the epithelial to 

mesenchymal transition and therefore invasion and metastasis.  In contrast, E-cadherin is 

highly expressed in the lymphovascular emboli of IBC.  β-catenin acts as an adapter 

protein binding E-cadherin to the actin cytoskeleton  (20).  This association of E-cadherin 

with β-catenin should sequester β-catenin in the cytoplasm and limit Wnt signaling.  

Similarly, WISP3 is typically lost in IBC (51).  Interestingly, WISP3, or cystein-rich 

protein CCN6, seems to maintain cell adhesion and E-cadherin expression.  Loss of 

CCN6 in non-IBC cells lead to a down-regulation of E-cadherin through induction of 

Snail and Zinc finger E-box-binding homeobox 1 (ZEB1) (52) which concurs with the 

increased expression of Snail in IBC (32).  
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Although IBC tumor cells clump together due to homotypic interactions of E-

cadherin, the characteristic emboli retract from the endothelial wall.  Sanford Barsky’s 

lab (53) showed that although the adhesion molecule MUC1 is overexpressed in the 

MARY-X model, sialyl-Lewisx/a carbohydrates are markedly decreased due to  a loss of 

α3/4-fucosyltransferase activity.  Without the sialyl-Lewisx/a moieties, MUC1 and other 

adhesion molecules are unable to bind the E-selectin on the endothelial vessels (53).   

RhoC GTPase is typically overexpressed in IBC (46).  RhoC is a member of the 

ras with high homology to RhoA.  The ras signaling pathway initiates cell motility and 

focal adhesions (14).  As prenylation is required for ras function, a farnesyl transferase 

inhibitor may be useful in treating IBC (54).   

SUMMARY 

In conclusion, inflammatory breast cancer is a rare but highly aggressive form of 

breast cancer.  A number of clinical, pathological, and molecular attributes make IBC a 

distinct entity from other locally advanced breast cancers.  The disease is characterized 

clinically by erythema and edema of the breast and a rapid disease progression.  Although 

not required for diagnosis, the pathological hallmark of IBC is the presence of tumor 

nests in the dermal lymphatics.  These emboli are held together by E-cadherin as 

confirmed by the MARY-X mouse xenograft model.  Additionally, IBC is typically ER- 

with altered Her2.  RhoC GTPase is typically over-expressed and WISP3 is consistently 

lost.   Although IBC is not a true inflammatory process with few infiltrating leukocytes 

and minimal production of inflammatory cytokines, the tumor is characterized by and 

high levels of angiogenic signaling and expression of the Cox2 and NF-κB inflammatory 

signaling pathways. 

 



www.manaraa.com

 

 12 

A diagnosis of inflammatory breast cancer has been associated with all intrinsic subtypes 

of breast cancer in frequencies fairly similar to breast cancer in general.  Furthermore, no 

specific molecular event has been identified as a causative agent of IBC.  As such, it is 

possible that the factors that make IBC such an aggressive disease may not be intrinsic to 

the tumor.  We propose that host factors from the tumor microenvironment may play a 

pivotal role in tumor evolution.  As IBC is defined by the presence of inflammatory 

features, later chapters of this thesis will examine the relationship between inflammatory 

factors and IBC.   
  



www.manaraa.com

 

 13 

 

RESEARCH OBJECTIVES 

The overall goal of this project is to understand the role of immune system and immune 

mediated inflammation in inflammatory breast cancer.  The central hypothesis is: 

 

Inflammatory breast cancer (IBC) is distinguished from non-IBC 

by unique immunological characteristics that contribute to the 

rapid progression of the disease.   

 

To that end, four specific aims are offered: 

 

Specific Aim 1: Establish that IBC patients have a serum cytokine profile that is unique 

from that of non-IBC and healthy donors 

Specific Aim 2: Establish IBC patients have a hematologic profile that is different from 

that of non-IBC and healthy donors 

Specific Aim 3: Establish that the peripheral blood cells of IBC patients have functional 

changes that are unique and distinguishable from those of non-IBC and healthy donors 

Specific Aim 4: To establish that immune mediated inflammation induces aggressive 

changes in inflammatory breast cancer tumor cells  
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Chapter 2: Soluble Factors 
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POPULATION STUDIED 

 

In order to establish a serum cytokine profile in inflammatory breast cancer, we 

analyzed peripheral blood samples obtained under several University of Texas MD 

Anderson Cancer Center IRB approved protocols including Lab08-0199 “Reactivation of 

Epstein Barr virus in patients with breast cancer” and 2006-1072 “Inflammatory Breast 

Cancer Registry.”  Lab08-0199 served as the basis for the remainder of the studies in this 

dissertation and is described in the following chapter.  The Inflammatory Breast Cancer 

Registry protocol 2006-1072 was initially set up to capture all newly diagnosed IBC 

patients with (M1) or without (M0) de novo metastases at The University of Texas MD 

Anderson Cancer Center.  The protocol was later expanded to include Cohort II 

consisting of IBC patients who had received systemic therapy.  For serum cytokine 

profiling 125 treatment-naïve and 57 previously treated IBC patients were analyzed.  

Under protocol Lab08-0199, samples were collected at the start of a new line of therapy.  
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Table 2. 1 

Patient characteristics for serum cytokine studies.  Patients in this study were 
recruited under MD Anderson IRB-approved protocols Lab08-0199 and 2006-1072.  
Patients included locally advanced breast cancer patients with and without inflammatory 
features (IBC and LABC) and Stage IV metastatic patients with and without 
inflammatory features (MIBC and MBC).  Tumor subtypes are derived from pathological 
report, TNBC tumors lacked expression of ER, PR and Her2; tumors were classified as 
Her2+ if they were IHC 3+ or FISH+; tumors were classified as luminal if they were 
positive for hormone receptors (ER and/or PR) staining but not Her2 amplified.  
Abbreviations: HR, Hormone receptor positive IBC Inflammatory Breast Cancer; LABC, 
Locally Advanced Breast Cancer; MBC, Metastatic Breast Cancer; MIBC, Metastatic 
breast cancer with inflammatory features; TNBC, triple receptor negative breast cancer.  
Healthy donors (HD) consisted of women without cancer and of age 24-60 recruited from 
MD Anderson Cancer Center.   
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 IBC LABC MBC MIBC HD 
N 106 30 28 76 29 

Age 
52.2 

(23 – 80)  
51.6 

(32 - 67) 
53.3 

(34 – 76) 
51.7 

(25 – 78) 
39.4 

(24 – 60) 

Race 

Asian/Pacific Islander 2 1 1 0  
African American 10 3 3 7  
Spanish, Hispanic 11 6 5 5  
Caucasian 83 20 19 64  

Stage 
II - 14 - -  
III 106 16 - -  
IV - 0 28 76  

Grade 
1 1 3 0 1  
2 25 8 8 17  
3 68 19 14 51  

Treatment Status 
Treatment Naive 79 29 6 46  
Previously Treated 27 1 22 30  

Subtype 
HR+ 33 15 13 25  
Her2 amplified 48 9 8 25  
TNBC 24 6 7 26  

Lymphatic Invasion 
No 24 16 5 14  
Yes 44 7 10 35  
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BACKGROUND 

To establish a profile of systemic soluble inflammatory factors in inflammatory 

breast cancer, serum samples were analyzed in batch using Luminex multiplex bead 

technology.  The Luminex cytokine assays are similar to a sandwich enzyme-linked 

immunosorbent assay (ELISA) consisting of an immobilized capture antibody and a 

reporter-conjugated detection antibody.  In an ELISA the capture antibody is bound to a 

polystyrene plate; samples, standards and in some cases, analytes, are indexed to the 

physical location in the plate.  Luminex assays conjugate the capture antibody to a 

polystyrene bead filled with a precise ratio of flourophores that give the bead a unique 

fluorescent signal that can be decoded by two fluorescent parameters on a flow cytometer 

(55).  Different detection antibodies are conjugated to different colored beads and added 

to each sample in multiplex.  The first generation Luminex technology allows up to 100 

different beads to be read, but in practice, antibody interactions become problematic 

above multiplexes with 30 to 40 analytes.   

In this study, 45 different factors were analyzed in 5 separate panels.  The 

cytokines are listed in Table 2. 2, with a brief description of each.  Cytokines and 

chemokines can be highly promiscuous, as most are derived from multiple sources and 

act on a variety of targets.  The chemokines in particular (listed on the second page of 

Table 2. 2) can bind to multiple receptors.  Furthmore, many of the inflammatory 

pathways are highly redundant with small functional differences between molecules.  As 

such, an inflammatory profile can be different in different patients.  Therefore, as a first 

pass, we looked at the sum of the profile (literally): the z-scores each for cytokine were 

summed to give an unbiased, equal weight to each factor amalgamated into a single 

number.  For this total expression profile, there was no difference between IBC and non-
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IBC (p = 0.171).  However, IBC, MIBC and LABC had lower total expression of 

cytokines than HD (p < 0.001, p = 0.003, and p = 0.001) but MBC was not significantly 

different from HD (p = 0.055).  This did not seem to be treatment related as the same 

relationships held when looking only at treatment naïve patients (p = 0.001, p = 0.008 

and p = 0.003 with MBC vs. HD p = 0.191).  It is possible that this is due to lower total 

protein levels, which might be possible to correct for using total serum albumin, but this 

was not analyzed.   

Systemic inflammation can be estimated by looking at levels of C-reactive protein 

(CRP) that binds phosphocholine on the surface of damaged cells and some microbes to 

activate complement.  In contrast to the other factors profiled here, CRP is produced 

almost exclusively by the liver in response to other inflammatory factors such as IL-6.  

Normal CRP levels are below 10 mg/L.  Following an acute assault, CRP serum levels 

rises within 2 hours and can peak at around 200 mg/L within 2 days during an active 

bacterial infection.  Mild inflammation, viral infections and late pregnancy generally 

have CRP levels between 10-40 mg/L.  Chronically elevated levels have been associated 

with inflammatory conditions such as arthritis and with malignancies.  Even levels in the 

high range of normal have been associated with an increased risk of cardiovascular 

disease.  Interestingly, statins, which are currently of great interest for their possible 

protective effects in breast cancer (56), have been shown to reduce CRP levels (57). 

Cytokines perform several basic functions.  Table 2. 2 groups cytokines by the 

most common function for each cytokine.  There are inflammatory factors, angiogenic 

factors, factors that support a type I cellular immune response, factors that drive a type II 

humoral response, anti-inflammatory factors, growth factors, hematopoietic growth 

factors, chemokines that act through G-protein coupled receptors that give directional 
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signals, and factors that are highly associated with bone metabolism (critical in breast 

cancer as bone is one of the most frequent metastatic sites).   

These are general categories and most factors will fall into several different 

categories, and even show diametrically opposed functions under different conditions.  

For example, IL-6 is sometimes considered anti-inflammatory because it opposes the type 

I immune response which is usually initiated through cells expressing both the IL-6 

receptor (IL-6R) glycoprotein 130 (GP130).  While GP130 is ubiquitously expressed, IL-

6R has a limited expression pattern.  However, soluble forms of the IL-6R are able to 

interact with both soluble IL-6 and membrane-bound GP130 to initiate signaling in a 

wide variety of cells.  This signaling complex initiates signal transducer and activator of 

transcription 3 (Stat3) (58).  This dual role of IL-6 may indicate that IL-6 plays a key role 

in the transition from innate to adaptive immunity.  Early stages of a typical acute 

immune response include the recruitment of neutrophils and then replaced by monocytes 

and T cells after 1 or 2 days.  This early stage includes inflammatory factors TNF-α and 

IL-1β that activate neutrophils.  Proteolytic cleavage of the IL-6R by the invading 

neutrophils can release sIL-6R to initiate trans-signaling and induce the switch away from 

neutrophil-attracting chmokines like (Groα, IL-8 and fractlakine) to monocyte-attracting 

chemokines (MCP-1, and MCP-2) (59, 60).  IL-6 trans-signaling also recruits T-cells 

(61).  Critically, IL-6 signaling also induces EMT and stem-like properties in breast 

cancer cells (62)  Trastuzumab-induced cancer stem cell expansion with a concomitant 

increase in Twist or Vimentin and loss of EpCAM and E-cadherin is mediated by IL-6 

(63).  Such inflammatory signals can derive from the tumor, invading mesenchymal 

stromal cells (64), or hematopoietic cells.  In addition to IL-6, IL-8 has also been shown 

to be critical in maintaining breast cells in a stem-like state (65, 66).  As such, IL-6 and 

IL-8 levels can be critical regulators of metastatic potential in breast cancer.   
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As mentioned above, TNF-α and IL-1β are critical factors in acute inflammation.  

These two cytokines are potent inducers of nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB), one of primary inflammatory signaling pathways and a critical 

promoter of inflammation associated cancers (67).  TNF-α activates NF-κB through 

IκBβ (68).  Receptor activator of nuclear factor kappa-B ligand (RANKL), critical in 

bone metabolism through the activation of osteoclasts (69), is also critical in during 

mammary gland development (70) and tumorigenesis (71).  During pregnancy, RANKL 

activates NF-κB through IκBα (70) to promote cyclin D1 dependent proliferation of 

epithelial cells.  As such, dysregulated inflammatory signaling through NF-κB can drive 

proliferative cells.   

In addition to NF-κB, cyclin D1 proliferation also requires AP1 signaling, often 

derived from growth factors such as epidermal growth factor receptors EGFR and Erbb2 

(72).  Epidermal growth factor (EGF) and Transforming growth factor alpha (TGF-α) are 

stong inducers of EGFR signaling.  EGF is particularly important in TNBC (73) (Ueno  

and IBC (74). 

The adaptive immune response has been divided into 2 broad classes: a type-I 

response driven by cytotoxic T-cells and a humoral type-II response driven by B-cells.  

CD4+ helper T cells (TH) produce cytokines that polarize these dichotomous responses.  

The type-I (cellular) response is typified by a class of cytokines, such as interferon 

gamma (IFN-γ), interleukin-2 (IL-2), and IL-12.  These induce and are produced by type-

1 polarized T-cells referred to as TH1.  In contrast, the type-II (humoral) response favors 

the production of IL-4, IL-5, and IL-13.  These are referred to as TH2 cytokines.  As IL-

10 and IL-6 promote B cell growth, these are typically considered TH2 cytokines, as 

well.  As the TH2 cytokines inhibit the production of TH1 cytokines, they are sometimes 

considered anti-inflammatory.  But more importantly, the TH1 response is generally 
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considered to control tumor growth through the activation of cytotoxic killing whereas 

the TH2 polarization is considered to promote tumor immune evasion and tumor growth.  

For example, TH2 polarized CD4+ cells have been shown to induce a type-II polarization 

in tumor infiltrating macrophages that produce EGF to promote tumor growth(74).  

Therefore, the level of expression of TH1 and TH2 cytokines can promote tumor control 

by the immune system or tumor progression.   

Recently, a third type of adaptive response has been identified that controls 

extracellular bacteria, particularly at epithelia.  Primed by IL-6, TGF-β, and IL-1β, the so 

called TH17 response is typified by production of IL-17 family members.  This is 

considered to be a highly inflammatory response and is related to auto-immunity.  In this 

study, we focused on the prototypical cytokine IL-17 and the IL-12p40 subunit that is 

involved in IL-12 (TH1) polarization and IL-23 TH17 polarization.   

TGF-β is usually considered an anti-inflammatory agent, yet with the induction of 

TH17 is a very strong promoter of inflammation. In conjunction with IL-10, TGF-β 

produced by regulatory T cells (TReg) is a potent inhibitor of both TH1 and TH2 

responses.   

These cytokines are summarized in the tables on the following pages.  

INFLAMMATORY BREAST CANCER SERUM SIGNATURE 

To see if an IBC-specific pattern of inflammation exists, we performed an 

unsupervised hierarchical clustering of the 45 serum cytokines as seen in Figure 2. 1 on 

page 27.  No clear IBC-specific pattern could be discerned.   
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Table 2. 2 

List of cytokines analyzed. Forty-five cytokines were analyzed by Luminex multiplex 
beads including inflammatory cytokines, angiogenesis-related factors, T-helper (TH)1-, 
TH2-, and TH17-related cytokines, growth factors, hematopoietic growth factors, 
chemokines and bone-related factors.  
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	   Cytokine	   	   Name	   Function	  
Inflammatory CRP  C-reactive protein Acute systemic inflammation, produced by liver 

Inflammatory IL-1α  Interleukin 1 alpha Expressed by mostly epithelial cells, important in maintaining epidermis 

Inflammatory IL-1β  Interleukin 1 beta Pro-inflammatory, canonical inducer of NF-κB signaling 

Inflammatory IL-1RA  Interleukin 1 receptor antagonist Prevents IL-1β signaling 

Inflammatory IL-6  Interleukin 6 Th2 and highly pro-inflammatory, increases with exercise, bone resorption, shown 
to induce EMT 

Inflammatory sCD40L CD154 Soluble CD40 ligand A TNF family member expressed on T cells that activates APC 

Inflammatory TNF-α  Tumor necrosis factor alpha Pro-inflammatory, induces IL-1 and IL-6 

Inflammatory TNF-β  Tumor necrosis factor beta 
(lymphotoxin) 

Functional homologue to TNF-α 

Inflammatory IL-8 CXCL8 Interleukin 8 Recruits neutrophils and granulocytes, angiogenic, supports breast cancer stem 
cells 

Angiogenic FGF-b  Basic fibroblast growth factor Promotes angiogenesis 

Angiogenic VEGF  Vascular endothelial growth factor Promotes angiogenesis 

TH1 IFN-γ  Interfern gamma (class II interferon) Primary TH1 cytokine, promotes macrophages and NK killing 

TH1 IL-2  Interleukin 2 T-cell growth factor, a TH1 cytokine, critical for TReg 

Inflammatory IL-12P40  Interleukin 12 p40 subunit (beta) Subunit sharted by IL-12 (promotes TH1, NK) and IL-23 (promotes TH17 and 
inflammation) 

TH1 IL-12P70  Interleukin 12p70 (p40 + p35) Promotes TH1 

TH2 IL-13  Interleukin 13 Similar to IL-4, Promotes TH2, induces MMPs 

TH2 IL-4  Interleukin 4 The primary TH2 cytokine, induces TH2, humoral immunity 

TH2 IL-5  Interleukin 5 Produced by TH2 and mast cells 

TH2 IL-9  Interleukin 9 T-cell growth factor, TH2-like 

anti-viral IFN-α2  Interferon alpha 2 Anti-viral 

TH17 IL-17  Interleukin 17 Primary TH17 cytokine, highly pro-inflammatory 

Anti-
inflammatory 

IL-10  Interleukin 10 Produced by monocytes, TH2, Treg; inhibits pro-inflammatory signaling, growth 
factor for B cells 

Growth factor TGF-β  Transforming growth factor beta Highly pleiotropic, anti-inflammatory, anti-proliferative, strong inducer of 
epithelial mesenchymal transition (EMT) 

Growth factor EGF  Epidermal growth factor Promotes growth, differentiation, and proliferation  

Growth factor TGF-α  Transforming growth factor alpha Similar to EGF, can bind EGFR 
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	   Cytokine	   	   Name	   Function	  
Hem. growth factor Flt3L  Fms-related tyrosine kinase 3 ligand Similar to stem cell factor, proliferation and differentiation of various blood cell  

progenitors including dendritic cells 
Hem. growth factor G-CSF  Granulocyte colony-stimulating factor Stimulates proliferation and differentiation of granulocytes can also mobalize  

stem cells from bone marrow 
Hem. growth factor GM-CSF  Granulocyte-macrophage colony-

stimulating factor 
Stimulates proliferation and differentiation of granulocytes and monocytes 

Hem. growth factor IL-15  Interleukin 15 Similar to IL-2 promotes T and NK functions , usually trans-presented for 
juxtacrine signaling 

Hem. growth factor IL-3  Interleukin 3 Growth factor for myeloid and lymphoid progenitors, matures pDC 

Hem. growth factor IL-7  Interleukin 7 Lymphocyte homeostasis 

Hem. growth factor sIL-2Rα sCD25 soluble IL-2 Receptor alpha (CD25) Shed from activated T and TReg, can inhibit IL-2 signaling 

Chemokine GRO CXCL1 Growth related oncogene Neutrophil chemoattractant 

Chemokine IP-10 CXCL10 Interferon gamma-induced protein 10 Recruits hematopoetic cells 

Chemokine MCP-1 CCL2 Monocyte chemotactic protein-1 Recruits monocytes, dendritic cells and memory T cells 

Chemokine MIP-1α CCL3 Macrophage inflammatory protein alpha Activate granulocytes and induce inflammatory cytokines 

Chemokine MIP-1β CCL4 Macrophage inflammatory protein beta Activate granulocytes and induce inflammatory cytokines 

Chemokine MCP-3 CCL7 Monocyte chemotactic protein-3 Similar to MCP-1, attracts monocytes 

Chemokine Eotaxin CCL11 Eotaxin Binds CCR2, 3, 5, recruits eosinophils  

Chemokine MDC CCL22 Macrophage-derived chemokine Recruits mDC and IL-2 activated NK 

Chemokine Fractalkine CX3CL1 Fractalkine Chemoattractant  for T cells and monocytes 

Bone OC  Osteocalcin Promotes osteoblastic bone generation 

Bone OPG  Osteoprotegerin Decoy for RANK-L 

Bone PTH  Parathyroid hormone Bone resorption 

Bone RANKL  Receptor activator of nuclear factor 
kappa-B ligand  

TNF family member activated osteoclasts 



www.manaraa.com

 

 27 

Figure 2. 1 

Unsupervised hierarchical clustering of serum cytokines shows no IBC signature.   
45 Serum cytokines were measured using Luminex multiplex beads.  Each cytokine was 
normalized to the healthy donors using the formula  (xj,i – µj,HD) / (SDj,HD) where µHD is the 
mean of the healthy donors, SDHD is the standard deviation of the healthy donors for each 
cytokine j and subjected to hierarchical clustering using the Person correlation as the 
distance metric with average linkage clustering.  Black values are near the mean of the 
healthy donors, yellow represents measured serum concentrations higher than the mean 
of the healthy donors and blue represents lower levels.  The sample classification color 
code is along the top: IBC, HD and non-IBC are shown in blue green and red, 
respectively.  No clear IBC-unique signature is observed.  Note that the cluster of 
upregualted inflammatory factors is not enriched for any subtype.



www.manaraa.com

 

 

28 

 



www.manaraa.com

 

 29 

We next looked at median levels each cytokine in IBC, non-IBC and healthy 

donors.  The data are summarized in heat-map form in Figure 2. 2 on page 31.  In 

contrast to our hypothesis, IBC is not characterized by increased inflammation.  Using 

CRP as a measure of general inflammation, median levels are slightly higher in IBC but 

not significantly (p = 0.706).  However, patients with metastatic disease, both MBC and 

MIBC, have elevated levels of CRP compared to normal (p = 0.050 and 0.049, 

respectively).  MBC was higher than MIBC, but not significantly (p = 0.498).  We might 

expect inflammatory markers to increase with treatment as chemoradiation induces cell 

death.  In MIBC, the elevated CRP is not a result of treatment, as treatment naïve patients 

have elevated levels of CRP as well (p = 0.032).  In contrast, treatment naïve MBC 

patients (n = 6) did not have elevated CRP levels (p = 0.965).  In fact, with a median CRP 

of 8.2 mg/L, MBC was only slightly higher than HD (median 5.6 mg/L) and with a trend 

to be lower than MIBC (median = 24.9 mg/L, p = 0.097).  While the number of treatment 

naïve MBC patients is very small, this suggests there MIBC is a different entity than 

MBC without inflammatory features.  

Observing the median serum levels of the other inflammatory markers, the pattern 

seems to hold: IBC is not characterized by systemic inflammation compared to LABC.  

In contrast, osteoprotegerin (OPG), osteocalcin (OC), eotaxin, TGF-α, IFN-α, IL-3 and 

IL-8 are all significantly lower in IBC than in LABC (p < 0.05).   

Furthermore, looking at patients with metastatic disease, those with inflammatory 

features (MIBC) had lower levels of inflammatory cytokines than those non-IBC 

metastatic breast cancer including OPG, OC, eotaxin, G-CSF, FLT-3L, IFN-α, IL-17, IL-

7, IL-8, and MIP-1β (p < 0.05), although for most of these cytokines, treatment seemed 

to contribute to the elevated levels as only OPG, OC and FMS-like tyrosine kinase 3 

ligand (FLT3L) remained significant when looking at only treatment naïve patients.   
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The TH1/TH2 balance (a sum of the HD standardized z-scores for IFN-γ, IL-

12p70 and IL-2 and subtracting IL-4, IL-5, IL-6, IL-10 and IL-13) seems to favor TH2 in 

IBC and MIBC, again primarily in the treatment naïve patients.    
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Figure 2. 2 

Inflammatory breast cancer has lower inflammatory cytokines.  The serum cytokine 
data is presented as median values.  As in the previous figure, low values are colored blue 
and hi values are colored yellow.  Note that the colors represent scaling, not significance.  
All units are in pg/mL except CRP that is in mg/L.  An expanded version of the figure is 
on the following page.  IBC = inflammatory breast cancer, LABC = locally advanced 
breast cancer, MBC = metastatic breast cancer (without inflammatory features), MIBC = 
metastatic breast cancer with inflammatory features, HD = healthy donors.  
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  IBC LABC MBC MIBC HD 
CRP 9.0 6.9 22.0 11.9 5.6 
IL-1α 12 17 27 19 22 
IL-1β 2 2 2 2 2 
IL-1RA 27 17 7 26 0 
IL-6 4 3 6 6 0 
TNF-α 7 8 9 8 11 
TNF-β 8 10 14 10 20 
IL-8 26 33 50 26 34 
bFGF 86 94 131 91 136 
VEGF 332 354 480 286 322 
IFN-γ 29 32 36 24 39 
IL-2 2 3 1 2 0 
IL-12p40 13 20 25 19 10 
IL-12p70 7 6 12 6 5 
IL-13 6 5 5 7 0 
IL-4 0 0 0 0 0 
IL-5 1 1 1 1 1 
IL-9 3 2 3 4 3 
IFN-α 17 32 40 21 33 
IL-17 19 24 27 13 22 
TGF-β 33172 29268 28290 33517 31942 
EGF 151 215 198 170 75 
TGF-α 5 7 7 5 7 
Flt-3L 13 56 92 30 46 
G-CSF 56 65 97 58 113 
GM-CSF 44 50 66 49 61 
IL-15 1 2 3 3 2 
IL-3 0 0 0 0 0 
IL-7 7 15 25 10 26 
sIL-2Rα 0 0 9 5 0 
GRO 668 737 991 868 1260 
IL-10 9 6 9 9 7 
IP-10 379 344 514 495 416 
MCP-1 973 1010 1018 944 524 
MIP-1α 17 17 19 16 14 
MIP-1β 47 56 68 50 62 
MCP-3 10 14 15 13 4 
Eotaxin 111 157 179 110 134 
MDC 1690 1664 1705 1554 1713 
Fractalkine 63 98 113 73 91 
OC 424 683 733 441 562 
OPG 212 252 316 250 254 
PTH 11 11 11 12 25 
RANKL 0 0 0 0 0 
	  	   	  	   	  	   	  	   	  	   	  	  

	  	   	  	   Lo	   Med	   Hi	   	  	  
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IBC LABC MBC MIBC HD IBC LABC MBC MIBC IBC MBC MIBC HR+ Her2+ TNBC M0 M1 non4IBC IBC HR+ Her2+ TNBC HR+ Her2+ TNBC Naïve Previous
CRP 9.1 6.9 22.0 11.9 5.6 8.6 6.2 6.1 15.1 15.1 23.4 9.4 11.5 8.7 12.5 8.7 12.9 12.2 10.6 7.5 17.6 24.6 14.0 8.1 11.7 8.7 15.2

IL-1a 12 17 27 19 22 15 20 54 17 8 26 26 19 14 20 13 24 25 16 25 16 26 17 13 17 17 16

IL-1β 2 2 2 2 2 2 2 2 1 2 4 3 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2
IL-1RA 27 17 7 26 0 30 19 17 16 23 5 43 23 23 28 25 21 13 27 0 16 52 30 23 21 21 23
IL-6 4 3 6 6 0 5 4 10 5 1 6 11 6 4 5 4 6 4 5 4 4 5 6 4 4 4 5
TNF-α 7.01 7.52 8.85 7.83 10.68 7.28 7.91 7.41 7.47 6.58 10.11 9.86 7.03 7.9 7.6 7.03 7.99 8.07 7.34 8.83 8.16 6.86 6.62 7.76 7.68 7.91 7.76
TNF-β 7.59 9.53 13.55 10.46 19.62 7.71 9.23 3.31 9.96 6.13 17.18 12.92 10.9 8.06 9.64 7.72 11.13 13.1 9.15 13.97 9.23 13.13 10.58 7.85 9.31 10.07 10.58
IL-8 25.73 33.36 50.18 25.98 34.46 28.21 33.04 45.62 26.09 17.79 63.19 24.41 30.34 26.2 32.82 29.35 27.15 41.13 25.98 42.46 39.56 48.53 24.19 24.79 31.17 28.94 27.08
bFGF 86 94 131 91 136 88 93 91 93 79 138 87 92 92 89 88 93 100 89 97 108 100 90 89 88 95 90
VEGF 331.62 353.94 479.62 285.69 321.68 365.13 394.21 623.29 302.68 223.16 414.36 230.11 367.43 290.21 344.84 331.62 302.68 400.28 315.57 437.98 284.87 481.52 329.04 293.4 334.15 336.57 287.54
IFN-γ 29 32 36 24 39 37 33 60 35 14 34 19 34 29 25 30 27 34 26 44 26 31 26 29 18 39 24
IL-2 2 3 1 2 0 2 3 2 1 1 1 3 2 2 3 2 2 3 2 0 3 6 2 2 1 2 2
IL-12p40 13 20 25 19 10 16 18 15 13 11 30 25 16 14 19 15 20 20 15 13 18 31 17 13 15 15 18
IL-12p70 7 6 12 6 5 10 6 43 6 3 12 4 9 8 4 7 7 8 6 8 8 4 11 8 4 6 5
IL-13 6 5 5 7 0 8 7 7 5 2 4 8 9 5 4 6 6 5 6 8 3 2 9 5 5 6 5
IL-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IL-5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
IL-9 3 2 3 4 3 3 2 3 3 1 3 5 3 3 3 3 3 2 3 2 3 4 4 3 2 3 2
IFN-α 17 32 40 21 33 17 31 121 19 14 40 29 21 19 21 20 22 33 19 31 34 35 20 18 20 21 23
IL-17 19 24 27 13 22 32 24 57 15 7 24 13 22 17 14 20 17 25 16 24 25 31 18 17 12 24 13
TGF-β 33171.94 29268.26 28289.73 33516.64 31941.8 34063.12 28914.68 22187.73 34534.67 27410.5 28622.71 29999.37 30925.76 33770.55 30025.29 32262.9 31745.99 28805.65 33424.67 28289.73 30591.48 28415.39 33501.22 34176.2 31585.19 33235.57 28622.71
EGF 151 215 198 170 75 153 199 114 148 146 205 203 167 153 199 155 180 200 155 176 192 286 167 142 181 144 201
TGF-α 5 7 7 5 7 6 8 4 7 5 7 4 6 6 5 6 6 7 5 5 9 11 6 5 4 6 5
Flt-3L 13 56 92 30 46 11 61 167 12 20 92 55 30 13 38 20 39 74 21 84 87 23 20 9 39 22 51
G-CSF 56 65 97 58 113 54 65 43 51 64 107 75 67 61 56 57 65 74 57 73 65 97 66 59 51 62 79
GM-CSF 44 50 66 49 61 44 48 37 43 45 76 67 49 47 49 45 58 60 45 55 75 58 46 44 47 47 59
IL-15 1 2 3 3 2 1 2 3 2 1 3 5 2 2 2 2 3 2 2 2 2 3 2 1 2 2 2
IL-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IL-7 7 15 25 10 26 9 15 36 8 5 22 14 11 10 8 8 12 17 8 20 16 19 9 9 8 12 10
sIL-2Rα 0 0 9 5 0 0 0 24 0 0 0 35 0 0 2 0 5 0 0 0 0 19 0 0 1 0 1
GRO 668 737 991 868 1260 672 723 436 799 661 1037 967 847 697 723 673 903 889 723 896 942 651 819 672 738 752 903
IL-10 9 6 9 9 7 9 5 2 7 7 10 13 7 8 10 8 9 7 9 3 7 11 9 8 10 7 9
IP-10 379.08 343.91 514.11 495.43 415.63 373.36 337.58 422.18 462.01 564.3 537.66 524.64 406.3 373.36 497.82 377.88 501.39 420.69 406.3 396.76 656.38 521.4 422.38 367.1 491.25 389.01 534.81
MCP-1 972.85 1010.02 1018.15 944.38 524.1 907.42 1015.42 1118.21 818.43 1150.53 1010.49 1070.4 968.6 907.42 1015.42 978.02 969.63 1014.04 948.01 1036.78 978.59 1015.42 944.38 899.65 989.88 852.42 1046.18
MIP-1α 17.07 16.95 19.11 15.73 13.5 17.53 16.88 20.63 15.56 12.33 19.11 16.29 17.13 17.22 16.76 16.97 16.78 17.13 16.78 17.13 14.07 18.8 17.22 17.25 15.9 16.85 16.78
MCP-3 10 14 15 13 4 13 13 16 14 8 15 11 14 11 11 12 14 14 12 14 12 16 13 10 10 13 11
MIP-1b 47.42 56.41 68.36 49.56 62.3 51.08 59.23 103.78 52.19 38.2 68.36 38.63 51.56 52.37 48.87 48.99 55.09 61.93 47.8 59.99 75.81 59.23 49.51 47.92 38.39 53.13 47.36
Eotaxin 111 157 179 110 134 112 165 140 110 101 188 111 114 119 125 117 128 165 111 166 165 171 96 111 120 120 128
MDC 1690 1664 1705 1554 1713 1714 1656 1363 1501 1326 1753 1592 1676 1714 1441 1678 1609 1669 1609 1711 1336 1907 1644 1754 1376 1697 1609
Fractalkine 63 98 113 73 91 68 93 101 61 43 132 86 81 70 63 69 77 108 66 110 112 93 79 62 57 73 79
OC 424 683 733 441 562 398 682 906 313 643 669 514 484 455 465 460 469 686 431 686 673 779 418 438 444 440 575
OPG 212 252 316 250 254 203 251 363 252 291 311 242 245 227 265 222 274 296 229 284 299 311 236 209 250 235 290
PTH 11 11 11 12 25 10 10 2 11 13 13 12 12 10 12 11 11 11 11 12 7 10 12 10 12 12 13
RANKL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NonIBC IBC TreatmentTreatment>Naive Previously>Treated Subtype Mets IBC
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IL-8 was significantly lower in IBC than in either LABC (p = 0.045) or HD (p = 

0.03).  Additionally, IL-8 was significantly lower in MIBC than in MBC (p = 0.027).  

This is unexpected considering the important role IL-8 plays in maintaining breast cancer 

stem cells (65, 66) and that IBC cell lines produce high levels of IL-8 as we have 

previously shown (75).  IL-8 has a serum half-life of about 10 minutes (76), so it seems 

unlikely that tumor sequestration of IL-8 could explain the low levels observed in IBC.   
 



www.manaraa.com

 

 35 

Figure 2. 3 

IBC has low serum IL-8, but cell lines express high IL-8.  IL-8 levels were measured 
in sera of IBC, LABC, MBC and MIBC patients.  IBC median IL-8 levels are 
significantly lower than LABC (Mann-Whitney U p < 0.05).  Likewise, median MIBC 
serum IL-8 is significantly lower than MBC. When IL-8 production was measured in the 
supernatants of breast cancer cell lines, the IBC cell lines expressed higher levels of IL-8 
than non-IBC cell lines.
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The one cytokine that was significantly elevated in IBC was TGF-β1.  In all 

patients, there was a non significant increase in TGF-β1 in IBC compared to LABC (p = 

0.139).  However, when comparing only treatment naïve patients, IBC (median TGF-β1 

34.0 mg/L) was significantly higher than LABC (median 28.9 mg/L).  Comparing MIBC 

to MBC, MIBC was significantly higher both in all patients (p = 0.005) and in an analysis 

restricted to treatment naïve patients (p = 0.002).  Interestingly, the IBC patients have 

normal levels while the MBC patients have lower than normal levels when untreated (p = 

0.039).  Likewise, MIBC has significantly higher levels of TGF-β1 than MBC (p = 0.005 

in all patients and p = 0.002 in treatment naïve patients).  This is particularly surprising 

given that recent gene expression micro-array data of laser micro-dissected tumors show 

that IBC tumors have attenuated TGF-β signaling (77).   

 Together with the CRP data and general inflammatory profile, these data 

suggest that IBC has more controlled systemic inflammation, possibly mediated by the 

anti-inflammatory properties of TGF-β1.  Interestingly, in addition to its anti-

inflammatory properties, TGF-β1 is the prototypical inducer of EMT, the process that 

allows tightly clustered epithelia cells to gain migratory and self-renewal abilities while 

impeding proliferation.  The CRP data suggesting less inflammation contradicts the 

central hypothesis and anecdotal observations from the clinic therefore we are repeating 

the CRP analysis using a high-sensitivity clinical test from Siemens.  Preliminary 

analysis shows median values of HD = 1.8, IBC = 3.0, LABC = 2.5 MBC = 4.3 and 

MIBC = 7.3 with both MBC and MIBC significantly higher than normal.   
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Figure 2.4 

TGF-β is significantly elevated in IBC.  Dotted lines show the 25th and 75th percentile 
range of the healthy donors.  Bars show the median with interquartile range.  Asterisks 
indicate significance by Mann-Whitney test at p ≤ 0.05.
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Chapter 3: Inflammatory Breast Cancer Hematology Profile 
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INTRODUCTION 

The immune system is the body’s defense against potentially harmful cells and 

organisms.  Everything from viruses to bacteria to multicellular parasites to cancer must 

be eliminated or controlled to sustain life.  The human body has protective layers starting 

with the skin as a protective barrier and progressing down to the single cell level where 

multiple pathways have evolved to protected against intracellular attack.  However, the 

hematopoietic system comprised of red and white blood cells, lymph nodes spleen, bone 

marrow and thymus is unique in its ability to circulate throughout the body.   

It is thought that the immune system evolved to protect the host against infection.  

The mammalian immune system is a highly complex network of specialized and 

interacting cells with a seemingly endless array of sub-types.  A brief introduction to each 

of the major classes is provided prior to discussing them in the context of inflammatory 

breast cancer in the following sections.  However, the immune system and the 

inflammation it induces have a darker side as there is increasing evidence that 

inflammation plays a crucial role in cancer development.  

Cancer is a heterogeneous system that has a multitude of interactions with the 

microenvironment at multiple steps during tumorigenesis and metastasis.  Interactions 

with the immune cells at each step of multistage metastasis can be pro-tumorigenic or 

anti-tumorigenic.  First, as a nascent primary tumor, mutant cancer cells must evade the 

immune system that is capable of recognizing and attacking novel antigens that may arise 

with the transformation process.  As it grows, the tumor requires growth factors and 

angiogenic factors that can be autocrine or provided by the microenvironment.  Invasion 

of surrounding tissue requires degradation of extracellular matrix.  Many tumor cells 

acquire this invasive phenotype, but macrophages that specialize in tissue restructuring 
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can also be recruited.  To reach a metastatic site, tumor cells from the primary tumor 

transit by way of the blood stream or lymphatic vessels where they must not only survive 

the turbulence of transport, but must continue to evade immune surveillance.  Only a very 

small proportion of tumor cells that enter the circulation are able to survive this process.  

Upon reaching the pre-metastatic niche, the tumor cell again must invade the surrounding 

tissue that must be conducive to tumor growth.  At each stage inflammation and 

regulation of the immune response plays critical.  In the 5th chapter of this thesis, we will 

provide evidence that inflammatory factors from activated immune cells are capable of 

inducing epithelial-mesenchymal transition (EMT) in inflammatory breast cancer cells.  

However, in this chapter, we will first try to define the scope of the peripheral immune 

system in IBC.     

 

POPULATION STUDIED 

In order to establish a hematological profile of peripheral blood cells in 

inflammatory breast cancer, we analyzed peripheral blood samples obtained under MD 

Anderson protocol Lab08-0199 “Reactivation of Epstein Barr virus in patients with 

breast cancer.”  This IRB-approved protocol had a planned enrollment of 120 patients 

and 30 healthy female donors and was open to patients starting a new line of therapy.  

The planned enrollment was for 30 patients with stage III inflammatory breast cancer and 

30 patients with locally advanced breast cancer (LABC) (stage IIB or higher) for 

comparison.  In addition, the protocol was to enroll 30 patients with metastatic breast 

cancer with inflammatory features (from here on referred to as metastatic IBC, or MIBC) 

and 30 patients with non-IBC metastatic breast cancer (MBC).  We hypothesized that 

IBC patients would be worse than LABC patients, and that MIBC would be worse than 
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both IBC and MBC.  Patients were recruited between October 2008 and April 2012 from 

the Nellie B. Connally Breast Center and the Morgan Welch Inflammatory Breast Cancer 

Research Program and Clinic at the University of Texas MD Anderson Cancer Center.  

There was an over-enrollment in the MIBC arm of the study with a dearth of IBC patients 

as several patients with metastases were recruited to the Stage III (non-metastatic) IBC 

arm of the study.  These patients were enrolled prior to staging and were thought to have 

locally advanced disease, but due to incomplete staging at the time of enrollment and the 

rapid progression of IBC, were subsequently found to have progressed to MIBC at the 

time of enrollment.  As a consequence, the protocol was modified to increase the number 

of allowable MIBC patients.  Additionally, 5 patients with secondary IBC were excluded 

from the analysis.  For this analysis, total enrollments included 32 patients with IBC, 26 

patients with LABC, 26 with MBC and 54 with MIBC and 34 healthy female donors 

(HD) as controls.   

Patient characteristics are presented in Table 3.1 Patient Characteristics on page 

17.  The healthy donor pool was significantly younger than patients (Student’s t-test, p < 

0.001).  However we thought it prudent to include younger healthy donors, as IBC is 

known to afflict young women.  Indeed, Morgan Welch, the namesake of the IBC 

program at MD Anderson, was 24 years old when she died of IBC.  Ten of the healthy 

donors included in this study were between 24 and 30.  Excluding these 10, the mean age 

of healthy donors was 46.4 years old, providing a rough approximation to the study 

population with no significant difference in age between the pruned healthy donor 

population and any of the groups (Student’s t-test > 0.05).  There was no significant 

difference between IBC and LABC with respect to age (Student’s t-test p < 0.05) or the 

distribution of race, tumor grade, subtype (HR+, Her2 amplified or TNBC), (χ2 test p > 

0.05), or the administration of prior systemic therapy (Fisher’s Exact test p > 0.05).  The 
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locally advanced group included 14 patients (54%) with stage II tumors, whereas by 

definition, all of the IBC cases are stage III.  As such, there is a slight stage mismatch 

between IBC and LABC.  Additionally, IBC had a significantly higher proportion of 

samples with reported lymphatic invasion: 85% of IBC cases noting the presence or 

absence of lymphatic invasion were reported as positive vs. 30% of LABC (Fisher’s 

Exact test p = 0.0002).  It should be noted, however, that dermal lymphatic invasion is a 

confirmatory diagnostic criteria for IBC, therefore pathologists examining a suspected 

IBC case are specifically looking for the presence of lymphatic invasion.  As such, there 

can be a bias for the positive reporting of lymphatic invasion in the IBC cases.   

Comparing MBC with MIBC, there was no significant difference with respect to 

age (Student’s t-test p > 0.05) or the distribution of patient race, tumor grade, lymphatic 

invasion, or prior use of systemic therapy (Fisher’s Exact test p > 0.05).  As shown in 

Table 3.2 Tumor Intrinsic Subtypes in Metastatic Disease, on page 48, MIBC had a 

significant enrichment in patients with TNBC tumors (χ2 test, p = 0.0413). This is in 

concordance with known studies of IBC (78). 
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Table 3.1 Patient Characteristics for Cellular Studies 

Patients in this study were recruited under MD Anderson IRB-approved protocol Lab08-
0199.  Patients included locally advanced breast cancer patients with and without 
inflammatory features (IBC and LABC, respectively) and stage IV metastatic patients 
with and without inflammatory features (MIBC and MBC, respectively).  Tumor 
subtypes are derived from pathological report, TNBC tumors lacked expression of ER 
and PR, and Her2 amplified; tumors were classified as Her2 amplified or Her2+ if they 
were IHC 3+ or FISH+; tumors were classified as luminal if they were positive for ER or 
PR staining but not Her2 amplified.  Abbreviations: HR, Hormone receptor positive IBC; 
LABC, Locally Advanced Breast Cancer; MBC, Metastatic Breast Cancer; MBIC, 
Metastatic breast cancer with inflammatory features; TNBC, triple receptor negative 
breast cancer 
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Table 3.1 
 

 
a) IBC vs. LABC p < 0.005; b) MIBC vs. MBC, p < 0.05; c) HD vs. all others, p < 0.05 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  IBC LABC MBC MIBC HD 
N   32 26 26 54 34 
Age Mean (range) 54.7 

(32-76) 
51.4 

(31-67) 
54.5 

(35-75) 
53.0 

(31-76) 
40.7c 

(24-60) 
Race Asian/Pacific 

Islander 
2 0 1 0  

 African American 1 4 3 4  
 Spanish/Hispanic 2 6 5 4  
 Caucasian 26 16 17 46  
Stage II - 14 - -  
 III 32 12 - -  
 IV - - 26 54  
Grade 1 1 3 0 0  
 2 12 8 7 15  
 3 18 15 13 37  
Treatment 
Status 

Previous Systemic 
Therapy 

3 2 19 36  

 Treatment Naïve 29 24 7 18  
Subtype Luminal (HR+) 9 13 14 15  
 Her2+ 16 9 7 15  
 TNBC 6 4 5b 24b  
Lymphatic 
Invasion 

Positive 22a 6a 8 36  
Negative 4 14 5 3  
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Table 3.2 Tumor Intrinsic Subtypes in Metastatic Disease 

Intrinsic tumor subtypes were approximated by IHC expression patterns and 
FISH.  There is a significant enrichment of triple receptor negative tumors in MIBC 
compared with MBC (χ2 test, p = 0.0413). 
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Table 3.2 
 
 

 MBC MIBC 
Luminal  

(HR+Her2-) 
54% 28% 

Her2+ 
 

27% 28% 

TNBC 
 

19% 44% 
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TOTAL PERIPHERAL BLOOD WHITE BLOOD CELL COUNT IS NORMAL IN IBC 

 

White blood counts (WBC) measure the total circulating leukocytes.  Normal 

ranges are between 4x103 and 11x103 cells/µL.  In general, a low WBC can leave a 

patient susceptible to infection whereas a high WBC is indicative of an infection or 

hematoproliferative disorder but can also increase with smoking or corticosteroid 

administration.  White blood cell counts also tend to decrease with age.  In general, a 

total WBC between 3x103 and 11x103 cells/µL of blood is considered normal consisting 

on average of 50-70% neutrophils, 25%-35% lymphocytes, 4-6% monocytes, 1-3% 

eosinophils, 0.4%-1% basophils.  To get a proper picture, both absolute WBC and 

relative (percent) values of individual leukocyte types should be considered.  Table 3.3 

White Blood Count and Leukocyte Differential – Absolute counts on page 59 and Table 

3.4 White Blood Count and Leukocyte Differential – Relative Values on page 61 

summarize the data from these studies.  The WBC is shown graphically in  Figure 3.1 

White blood counts in IBC are normal on page 51.  The data is presented graphically in 

Figure 3.2 White blood count and leukocyte differential on page 63.  The table highlights 

significant differences between groups.  However, for these tables and throughout this 

dissertation, differences between IBC and MBC, and LABC and MIBC are ignored as 

these are not meaningful comparisons.   

Median WBC was (in thousands of cells/µL) 6.80 for IBC, 6.80 for LABC, 5.30 

for MBC and 6.80 for MIBC.  The average HD WBC was 6.35.  MBC had the lowest 

WBC, significantly lower than that of HD, IBC, and even MIBC.    
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 Figure 3.1 White blood counts in IBC are normal 

 
WBC from IBC, LABC, MBC, MIBC and HD are shown as median + interquartile 
range.  The normal range of 4–11 x 103 leukocytes per µL of blood is shown with dotted 
lines.  WBC from both IBC and MIBC was not significantly different from normal.  
However, the median WBC in MBC was significantly lower than normal although still 
within the normal range.  36% of MBC patients were leukopenic with WBC below 4 x 
103 cells per µL.  Significant differences as determined by Mann-Whitney U test are 
denoted by * (p ≤ 0.05), ** (p ≤ 0.01), or *** (p ≤ 0.001).



www.manaraa.com

 

 52 

 

IBC LABC MBC MIBC HD
0

5

10

15

20
W

hi
te

 b
lo

od
 c

el
ls

 x
 1

03

pe
r 
µL

 p
er

ip
he

ra
l b

lo
od

****

**
*

*

2
6%

0
0%

9
36%

7
13%

0
0%

#  < normal
% < normal



www.manaraa.com

 

 53 

WHITE BLOOD COUNT AND DIFFERENTIAL 

 

Looking at total WBC gives only a very granular picture where IBC and MIBC 

both appear to be no different from that of HD.  However, examining subsets of cells 

gives a broader picture.  Throughout this chapter we will continue to subdivide peripheral 

blood leukocytes into smaller and smaller subsets.  In the following chapter, we will look 

at a few specific subsets and ask whether there are any functional differences in the cells. 

At a first pass, peripheral blood leukocytes can be subdivided in to granulocytes 

and agranulocytes.  Granulocytes, which include neutrophils, eosinophils and basophils, 

are also called polymorphonuclear leukocytes due to the varying shape of the nucleus and 

staining of intracellular granules.  The most common granulocyte is the neutrophil, the 

short-lived, armed-to-the-teeth bacteria killing machine.  These cells generally live about 

6 days with a circulating half-life of less than a day and are continuously regenerated by 

the bone marrow under physiological conditions.  Neutrophils are very important as a 

first-line defense against infection; however, they have also been implicated in promoting 

metastasis.  For example, high neutrophil levels, specifically the neutrophil to 

lymphocyte ratio, have been associate with poor clinical outcome in breast (79) and 

ovarian cancers (80), as well as nasopharyngeal (80), hepatocellular (81), gastric (82), 

colorectal (83), and renal cancers (84).  They can be recruited to the tumor 

microenvironment by chemoattratctants or chemokines such as IL-8 (85)  or Damage-

associated molecular pattern molecules DAMPS such as high-mobility group box 1 

(HMGB1)(86) that have been shown to be overexpressed in cancer (87).  Neutrophils can 

have strong angiogenic activity by the release of matrix metalloprotease (MMP) 9 and 

VEGF(88).  In vitro, neutrophils can enhance the migration of breast cancer cells in an 
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intercellular adhesion molecules (ICAM)-dependent manner (89).  Additionally, 

neutrophils are capable of establishing a pro-thrombocytic state through the creation of 

neutrophil extracellular traps through the release of DNA (90).  TGF-β can polarize 

neutrophils towards a pro-tumor N2 (type-2 immune response) state typified by high 

levels of arginase 1 and decreases tumor-directed cytotoxicity, whereas lack of TGF-β 

signaling can induce anti-tumorigenic N1 neutrophils that activate CD8 cells and are 

more cytotoxic (91).  Additionally, factors in the microenvironment can extend the life of 

neutrophils.  Perhaps most provocatively, neutrophils can prepare pre-metastatic sites 

prior to the arrival of tumor cells.  Using a mouse model of breast cancer, Granot et al 

showed that “tumor-entrained neutrophils” (TENs) accumulate in the lung and decrease 

tumor seeding efficiency.  They showed that neutrophils arrive at premetastatic site prior 

to detectable tumor cells; without the TGF-β suppressive effects from the tumor 

microenvironment, they are able to acquire an anti-tumorigenic N1 phenotype and are 

capable of killing tumor cells (92).  In contrast, Yan et al showed that immature myeloid 

cells accumulate in the lung and prepare the metastatic niche by releasing MMPs and 

promote vascular remodeling (93).  Thus, neutrophils are capable of greatly influencing 

the natural history of breast cancer.  

Eosinophils, named for their affinity for the acidic dye eosin (94, 95) are typically 

associated with allergic reactions due to their release of histamine.  They are typically 

associated with type-II immune responses (which will be discussed in Chapter 4) that 

help fight multicellular parasites.  Eosinophils release factors such as leukotrienes 

(derived from arachadonic acid), major basic protein, eosinophil cationic protein (which 

is similar to porforin), eosinophil-derived neurotoxin, eosinophil peroxidase, CD30L (a 

TNF-α family member) and a number of pro-inflammatory cytokines (96).  Although 

eosinophils have been shown to induce angiogenesis (97) and are active in breast 
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development (98), much research is required to understand the possible roles eosinophils 

may have in cancer.  

Basophils, the least common class of granulocytes, are named for the affinity to blue, 

basophilic dyes.  They tend to accumulate at site of ectoparasite infections such as ticks 

and allergic reactions.  IgE-primed basophils degranulate releasing histamine and 

inflammatory factors.  As they are targeted to the skin, they have potential relevance in 

IBC.  Although they arise from different progenitors, basophils in blood are similar to 

mast cells in tissue, which have been shown to be immune suppressive (99).  The immune 

suppressive effects are mediated by IL-10 (100).  Mast cells are recruited to the skin via 

draining lymph nodes (101) by the chemokine receptor CXCR4 (102).  Although the 

relevance of mast cells to cancer biology is starting to agglomerate, very little is known 

about basophils cells: in fact a Pubmed search of “basophil” and “breast cancer” only 

returned 11, mostly unrelated hits.   

In addition to granulocytes, peripheral blood leukocytes are comprised of two 

primary types of agranulocytes that can be readily distinguished by morphology alone: 

lymphocytes and monocytes. 

Monocytes are the precursors to the major phagocytic cells of the body.  Sharing a 

common myeloid progenitor with the granulocytes, monocytes give rise to microglia in 

the brain, Kupffer cells in the liver, osteoclasts in the bone and the professional antigen 

presenting cells: monocyte-derived dendritic cells (mDC, which can be found in blood 

and will be discussed separately).  These differentiated cells, and to a lesser extent the 

circulating monocytes, engulf pathogens, debris, and apoptotic cells (and bone in the case 

of osteoclasts), but they are more than just trash compactors.  Critical to immune 

function, after sampling the environment, they process and then present the antigens they 

encounter.  Antigen presentation is the critical first step in initiating an adaptive immune 
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response that allows the immune system to build a memory base to novel antigens.  As 

antigen presenting cells, they are capable of modulating the immune response by 

providing or retracing critical co-stimulatory signals and regulating the cytokine milieu of 

the responding cell.  These signals produced by antigen presenting cells regulate weather 

an immune response is initiated and what type of response is produced.  Therefore, these 

cells could be critical in regulating the inflammatory environment.  

Lymphocytes are derived from a common lymphoid progenitor during 

hematopoiesis, separate from the cells discussed, thus far.  Generally small, round and 

non-descript, lymphocytes in blood are comprised primarily of T cells, B cells and 

Natural Killer (NK) cells.  These cells will be discussed only briefly here and in greater 

detail later.  T cells and B cells make up the adaptive arm of the immune system: T cells 

are responsible for the cellular response and B cells the humoral (antibody) response.  

After leaving the bone marrow, T cells mature in the thymus (and thus the T-cell 

nomenclature) where they are “educated.”  As discussed later, T-cells respond to antigens 

presented by antigen presenting cells such as monocyte and their progeny and can either 

elicit a cellular response that can lyse cells including tumor cells, induce an inflammatory 

response, or provide growth factors for a B-cell antibody response.  In humans, B-cells 

remain in the bone marrow during maturation (however, the term B-cell refers not to 

bone-marrow, but instead to the bursa of Fabricius, the avain site of hematopoiesis and B-

cell maturation that lacks a direct mammalian homologue).  Natural killer cells are innate 

cytotoxic lymphocytes first described for their ability to quickly recognize and kill “non-

self” cells and now recognized to have broader immune effector and modulatory 

activities.  Therefore the number of lymphocytes in blood could play a role in tumor 

control and inflammation. 
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Thus, different cell types can contribute to the hematologic state of a patient.  As 

noted above, MBC has a decrease in total white blood count. Table 3.3 White Blood 

Count and Leukocyte Differential – Absolute counts on page 59 and Figure 3.2 White 

blood count and leukocyte differential on page 63 show the differential.  In IBC, 

peripheral blood counts of neutrophils, lymphocytes, monocytes, eosinophils and 

basophils are not significantly different from those of healthy donors.  MBC, however, 

has significantly lower than normal counts of neutrophils, lymphocytes and basophils (p 

= 0.037, <0.001, and 0.017 respectively) than those of HD.  To facilitate viewing 

multiple parameters of different scales, each variable in was standardized to the healthy 

donors as shown in the “radar plots” on the right side of Figure 3.2 White blood count 

and leukocyte differential. 

In comparing neutrophil distributions in advanced breast cancer, we observed an 

increase in neutrophil counts and relative frequency in IBC, LABC and MIBC but not 

MBCs.  Notably, MIBC did not have the drop in neutrophils.  This may suggest that the 

neutrophils in MBC are associated with the protective effect against metastasis as 

suggested by Granot (92).  However, this is contracted by Kaplan-Meier analysis which 

shows that patients with higher than average neutrophil counts (greater than the 95th 

percentile of the HD) have decreased overall survival (median survival of 9.0 months for 

hi neutrophil counts vs. 34.4 months for average neutrophil counts, p = 0.044 with a 

hazard ratio of 2.5).  However, the numbers are very small (7 patients with high 

neutrophil count and 5 deaths), and it is likely that the neutrophil count is a surrogate for 

infection.  Nevertheless, it is noteworthy that a simple blood test can be so illuminating.  

All patient groups with the exception of LABC had significantly lower than 

normal lymphocyte counts (Mann-Whitney U p < 0.05) and metastatic (M1) patients had 

lower than lymphocyte counts than non-metastatic (M0) patients.  While there was no 
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significant difference between IBC and LABC, this begins to suggest that the hematology 

in IBC “worse” than non-IBC and is there is a fundamental difference that makes IBC a 

unique entity.   

 

Unique to MIBC (seen as a purple line on the radar plot in Figure 3.2 White blood 

count and leukocyte differential), there is a significant increase in monocyte counts 

relative to HD, non-metastatic IBC and MBC (p < 0.05).  However, while MBC has a 

significant drop in WBC as noted above, these patients do not exhibit decreased 

monocyte counts.  This is borne out when looking at the relative proportions of 

monocytes where MBC has a non-significant trend towards elevated proportions of 

monocytes.  As monocytes are the precursors of most antigen presenting cells (APC) (i.e. 

dendritic cells and macrophages), our results suggest that sufficient numbers of APC to 

present to the adaptive arm of the immune system.  However, their functional ability to 

present antigen will be examined in Chapter 4.  
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Table 3.3 White Blood Count and Leukocyte Differential – Absolute counts  

White blood cell counts and differentials were collected as part of routine clinical visits.  
Data is reported as numbers of cells per µL.  The complete white blood count includes 
neutrophils, lymphocytes, monocytes, eosinophils basophils and unclassified cells.  Both 
mean and median are presented.  Test statistics are based off the Mann-Whitney U test.  
Significant differences are acknowledged by superscript. 
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Table 3.3 

 

Cells per µL 
Disease 

IBC LABC MBC MIBC HD 

WBC x 103 

Count 32 26 26 54 34 

Mean 6.99 7.07 5.38 6.75 6.89 

Median 6.80 6.80d 5.30b,d,g 6.80b 6.35g 

Standard Deviation 1.87 2.67 1.98 2.53 2.02 

Neutrophils 

Count 32 26 26 54 34 

Mean 4431 4387 3373 4519 4037 

Median 4460 3800 2999b,g 4309b 3544g 

Standard Deviation 1434 2574 1529 2142 1422 

Lymphocytes 

Count 32 26 26 54 34 

Mean 1898 2060 1387 1459 2220 

Median 1881c,e 1932d 1339d,g 1243c,h 2189e,g,h 

Standard Deviation 608 596 635 827 710 

Monocytes 

Count 32 26 26 54 34 

Mean 463 461 435 575 466 

Median 431c 461 428b 516b,c,h 446h 

Standard Deviation 191 138 218 252 172 

Eosinophils 

Count 32 26 26 54 34 

Mean 152 121 138 147 139 

Median 100 136 120 88 124 

Standard Deviation 129 65 122 210 99 

Basophils 

Count 32 26 26 54 34 

Mean 28 33 39 30 45 

Median 26 29 21g 23h 33g,h 

Standard Deviation 15 15 76 24 45 
 
a IBC vs. LABC p < 0.05 
b MBC vs. MIBC p < 0.05 
c IBC vs. MIBC p < 0.05 
d LABC vs. MBC  p <  0.05  
e HD vs. IBC p < 0.05 
f HD vs. LABC p < 0.05 
g HD vs. MBC p < 0.05 
h HD vs. MIBC p < 0.05  
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Table 3.4 White Blood Count and Leukocyte Differential – Relative Values 

The relative proportions of peripheral white blood cells are displayed. The complete 
white blood count includes neutrophils, lymphocytes, monocytes, eosinophils, basophils 
and unclassified cells.  Both mean and median are presented.  Test statistics are based off 
the Mann-Whitney U test.
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Table 3.4 
 

Percent Total Leukocytes 
Disease 

IBC LABC MBC MIBC HD 

Neutrophils 

Count 32 26 26 54 34 

Mean 62.6 59.6 62.0 65.9 57.8 

Median 63.2e 61.1 62.8 66.1h 57.8e,h 

Standard Deviation 8.2 10.9 9.8 10.3 7.4 

Lymphocytes 

Count 32 26 26 54 34 

Mean 28.0 31.1 26.4 22.3 32.6 

Median 26.4c,e 30.8 26.2g 21.7c,h 33.3e,g,h 

Standard Deviation 7.8 9.1 9.7 9.8 6.7 

Monocytes 

Count 32 26 26 54 34 

Mean 6.6 6.8 8.1 8.8 6.9 

Median 6.9c 6.5 8.0 8.7c,h 6.9h 

Standard Deviation 1.7 2.0 3.3 3.0 1.9 

Eosinophils 

Count 32 26 26 54 34 

Mean 2.2 1.9 2.6 2.3 2.0 

Median 1.7 2.1 2.0 1.4 1.7 

Standard Deviation 1.7 1.0 1.8 2.5 1.2 

Basophils 

Count 32 26 26 54 34 

Mean .4 .5 .6 .5 .6 

Median .4e .4 .4 .4 .6e 

Standard Deviation .3 .3 .8 .3 .5 

Other 

Count 32 26 26 54 34 

Mean .2 .1 .1 .3 .1 

Median .2e .0 .0 .0 .0e 

Standard Deviation .2 .2 .2 .7 .1 
 
a IBC vs. LABC p < 0.05 
b MBC vs. MIBC p < 0.05 
c IBC vs. MIBC p < 0.05 
d LABC vs. MBC  p <  0.05  
e HD vs. IBC p < 0.05 
f HD vs. LABC p < 0.05 
g HD vs. MBC p < 0.05 
h HD vs. MIBC p < 0.05  
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Figure 3.2 White blood count and leukocyte differential 

White blood counts and leukocyte differentials are depicted for each group.  Average 
counts and percentages are shown on the left and a standardized “radar plot” is shown on 
the right.  White blood counts are shown as healthy-donor standardized values by the 
equation (µj,i – µj,HD) / (SDj,HD) where µHD is the mean of the healthy donors, SDHD is the 
standard deviation of the healthy donors and µi is the mean of IBC (red square), LABC 
(blue diamond), MBC (green triangle), or MIBC (purple circle) for each j variable 
(neutrophil count, lymphocyte count, monocyte count, eosinophil count, and basophil 
count).  Each parameter is presented as a radial axis emanating from the center of the plot 
with the Z-scaled magnitude of each variable proportional to the distance from the center 
of the plot.  As the data are standardized to healthy donors, the HD group appears as a 
solid black line at 0.  A scaled average that is less than healthy donors falls inside the HD 
circumference and a scaled average that is higher than healthy donors falls outside the 
HD black circumference.  Note that statistics presented in the text and tables are based on 
non-parametric tests as most variables are not normally distributed; therefore there is no 
threshold value on these figures that mark a significant divergence from HD.  
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We can conclude that IBC patients have no major deficiencies in there general 

classes of leukocytes.  This is important to ward off infections and because several 

therapies, traztuzumab for example, require the presence of white blood cells for full 

efficacy.  In contrast, metastatic patients, both MBC and MIBC, exhibit marked 

lymphopenia, and all breast cancer patients show a slight decrease in lymphocytes.  

Lymphocyte subsets are discussed below.   

 

LEUKOCYTE IMMUNOPHENOTYPES 

 

As mentioned above neutrophils, basophils eosinophils, monocyte and 

lymphocytes can be quickly identified and enumerated based on their forward-scatter 

(size) and light-scatter (granularity) characteristics and are routinely observed in the basic 

laboratory White Blood Count and Leukocyte Differential.  However, to differentiate 

lymphocyte subsets such as T, B, and NK cells, as well as dendritic cells, additional 

expression patterns must be interrogated.  For this study we employed fluorophore-

labeled antibody staining with and cell enumeration by flow cytometry to characterize 

leukocyte subytpes, which will be discussed following a brief introduction.   

Introduction to immunophenotypes 

B cells are one of the two main components of the adaptive immune system and 

are responsible for producing antibodies.  These cells are considered adaptive because 

unlike innate immune cells, the receptors on the cell surface recognize antigen and elicit 

the immune response are not encoded in the genome and therefore are not immediately 

ready to fight an infection or clear mutant cells.  Instead, developing B cells undergo 

somatic recombination of the B-cell receptor producing a diverse repertoire of mature B 
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cell receptors. During development, self-reactive B cells are deleted to limit auto-

immunity and other cells wait silently until they are activated.  Each B cell has a single, 

genetically encoded receptor.  When a B-cell is activated by binding its cognate antigen 

by the B-cell receptor, the cell proliferates to produce progeny with identical receptors.  

B-cells undergo further somatic hypermutation once activated, a process that allows the 

population affinity for the antigen to be fine-tuned.  Once affinity is optimized, a small 

population is converted to a memory B cell and the rest become antibody factory plasma 

cells.  As such, when first exposed to antigen, adaptive immune cells require time to ramp 

up and provide protection, but secondary responses are much faster.   

In addition to fighting pathogens, it is widely accepted that B cells play a role in 

tumor control as well.  It is well known that many cancer patients develop auto-

antibodies to p53, c-myc and HER-2/neu although they are rarely sufficient to kill 

malignant cells (103).  This led to the development of one of the first drugs to target Her2 

amplified tumors.  The humanized monoclonal antibody traztuzumab, marketed as 

Herceptin by Genetech (now a member of the Roche Group), binds to the extracellular 

domain of the Her2 protein.  This binding interferes with both Her2 heterodimerization 

(and therefore mitogenic signaling) and activates antibody-dependent cellular 

cytotoxicity (ADCC) (104).   

Furthermore, B-cells, by the nature of their highly attuned receptors, act as very 

efficient and specific antigen presenting cells.  In addition to producing antibodies, B-

cells also secrete cytokines.  As such, they are capable of shaping the immune response 

of a cognate T cell.  For example, Breg cells secrete IL-10 and have anti-inflammatory 

properties (105).   

As there is a flip side to everything, B cells are also capable of promoting cancer.  

For example, Lisa Coussens has shown that antibodies to extracellular matrix can 
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increase tumor invasion and promote metastasis (106).  Immune complexes consisting of 

antibodies and complement proteins act as focal points for inflammation.  Circulating 

immune complexes deposit in the tumor microenvironment due to the leaky vasculature 

of the tumor (107-109).  These pre-metastatic lesions can require adaptive immune cells 

(T-cells and B-cells) to promote innate immune infiltrates that drive full metastatic 

progression (109, 110).  In addition, B-cell derived cytokines such as lymophotoxin-β 

(TNF-β), WNT16 and TNF-α can promote inflammation and tumor growth (111-113).  

Finally B cell cytokines such as IL-10 (114) and immunoglobulins (115) are able to 

inhibit the TH1 anti-tumor response from T-cells.   

 As mentioned in chapter 2, T cells are largely responsible for shaping the 

adaptive immune response.  T cells express a T-cell receptor (TCR) in the cell surface.   

Similar to the B-cell receptor, T-cell receptor variability is the result of somatic 

recombination resulting in clonal T-cells each with unique antigen specificity.  Once 

primed, T cells form antigen memory that allows for rapid secondary immune responses.  

There are two major classes of T cells: CD8+ cytotoxic T cells (Tc) cells and CD4+ T-

helper cells (Th).  CD8+ cells are the cytotoxic effector cells have evolved to kill infected 

cells by recognizing non-self antigens presented on the surface of infected cells by on 

major histocompatibility complex I (MHC-I).  As cancer is often characterized by 

genomic instability, novel peptides are frequently produced that can be targeted by CD8+ 

T cell killing.  In contrast, CD4+ Th cells recognize peptides expressed on MHC-class II.  

As MHC-II expression is restricted to professional antigen presenting cells, CD4+ cells 

do not target the cells they recognize (at least, not for killing).  The professional antigen 

presenting cells (APC) such as monocytes, macrophages, dendritic cells and B-cells, take 

up antigen from the environment and present it to Th cells.  Upon recognizing its cognate 

antigen, the activated T-cell responds by producing cytokines that “help” the immune 
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process which will be explored in the following chapter.  However, in brief, type-I 

cytokines (TH1) promote the cytotoxic immune response while type-II cytokines (TH2) 

promote the humoral response and inhibit the cytotoxic response.  A third type of CD4+ 

Th cell is the regulatory T cell (TReg).  These cells inhibit the immune response by 

secreting TGF-β and IL-10 and through cell-cell contact through molecules such as 

cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed cell death-1 (PD-1).  TReg 

require IL-2 and express very high levels of CD25, the IL-2 receptor alpha.  TReg typically 

express the transcription factor FoxP3 but can be enumerated by cell surface markers 

alone as CD3+CD4+CD25brightCD127- as shown in Figure 3.3 FACS Analysis of 

Leukocyte Subsets.   

 

Like CD8 cells, NK cells are cytotoxic lymphocytes capable of killing non-self, 

virus-infected, or abnormal cells.  In contrast to CD8+ cytotoxic T cells (Tc) that must 

first be primed, NK cells do not require priming and are capable of killing nearly 

immediately.  Although NK cells are innate cells, incapable of the genomic 

rearrangements of T and B cells of the adaptive immune system, it would be 

inappropriate to consider them a more primitive cell type.  In fact, many NK receptor 

families are not seen outside of mammals (116, 117) suggesting that NK cells in their 

modern form evolved after T cells.  There are over a dozen NK activating and inhibitory 

receptors that recognize the major histocompatibility complex Class I (MHC I), but each 

NK cell expresses only a subset of receptors.   

There is no single marker to adequately define NK cells.  Typically for human 

cells, once CD3+ T cells are excluded, the remaining CD56+ lymphocytes are often 

considered NK cells.  CD56, also known as Neural Cell Adhesion Molecule (NCAM), is 

involved in cell adhesion and may play a critical role in human NK cell development 
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(118).  However, it should be noted that CD56 is not expressed by mouse NK cells and 

therefore is not the definitive NK marker.  For clinical tests, NKs are typically stained 

with a cocktail of antibody reagents consisting of anti-CD56 (NCAM) and anti-CD16 

(the low affinity FcγIII receptor that facilitates binding and recognition of IgG 

immunoglobin).  This cocktail captures both the CD56+ NK and the rare CD56- subset 

that has been shown to be functionally impaired (119).  The two primary subsets of NK 

cells identified based on their expression of CD56: CD56bright and CD56dim.  CD56bright NK 

cells are developmentally immature and constitute about 10% of NK cells in peripheral 

blood but are enriched in secondary lymphoid organs.  They generally lack CD16 

expression (and are therefore incapable of antibody-dependent cellular cytotoxicity) and 

have low cytotoxicity, but produce copious amounts of cytokines such as IFN-γ, TNF-α 

and granulocyte colony stimulating factor (G-CSF).  For their ability to secrete cytokines, 

CD56bright are occasionally referred to as regulatory NK.  

 As mentioned above, T cells do not respond to free antigen, rather they 

require peptides (or occasionally lipids) to be processed and presented on MHC class I or 

class II.  Only professional antigen presenting cells express MHC class II with dendritic 

cells as the most potent.  As such, they are critical in determining what antigens T cells 

will see and in what conditions and form the critical link between the innate and adaptive 

immune system.  Dendritic cells scour the tissue rapidly processing antigen. Once 

activated through innate pattern recognition receptors that respond to “danger signals” 

(120), they migrate to lymph nodes where they increase their antigen presenting 

capabilities and interact with T cells.  The most common dendritic cells are derived from 

monocytes.  In the skin and mucosal surfaces these are referred to as Langerhans cells.  In 

the blood they are myeloid derived dendritic cells (mDC).  mDC are defined by high 

expression of HLA-class II (HLA-DR+) and absence of the lineage specific markers for 



www.manaraa.com

 

 70 

other agranulocytes (Lin-), specifically CD3 (T cells), CD14 (monocytes), CD16 and 

CD56 (NK), and CD19 and CD20 (B cells).  mDC have lack expression of the IL-3 

receptor (CD123) and do express the inactivated-C3b complement  receptor 4 (CD11c).  

A second class of dendritic cell that does not derive from the myeloid line is referred to 

as plasmacytoid dendritic cells (pDC).  These cells are also HLA-DR+ and Lin-.  But in 

contrast to mDC, pDC are CD123+ and CD11c- (see Figure 3.3 FACS Analysis of 

Leukocyte Subsets).  While mDC are the most potent antigen presenting cell, pDC are the 

professional IFN producing cells, synthesizing massive quantities of the anti-viral 

cytokine IFN-α which has been shown to have strong anti-tumor effects and frequently 

used as a anti-tumor therapy (121) but can be immune suppressive (122).  As such 

dendritic cells are critical in control immune induced inflammation.   
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Figure 3.3 FACS Analysis of Leukocyte Subsets 

Whole blood was stained with monoclonal antibodies and analyzed by 6-color flow 
cytometry.  A lymphocyte gate was set based on low light scatter (SSClo) and expression 
of the common leukocyte antigen, CD45.  Using this lymphocyte gate as an anchor 
population (SSClo CD45+), B cells were defined as CD19+ cells and T cells were defined 
as CD3+.  Within the CD3+ gate, Tc were defined as CD3+CD8+ cells and Th cells as 
CD3+CD4+.  T-regulatory (TReg) were defined as CD3+CD4+CD25brightCD127-.  Within 
the CD3-negative population, NK were defined as CD56+ or CD16+.  Regulatory NK are 
CD56bright (outlined with dotted line).  NK cells capable of mediating ADCC (ADCC NK) 
are CD16+.  Finally, CD57+ NK cells are terminally differentiated NK cells that can no 
longer proliferate and produce minimal cytokines.  Separately, within the leukocyte gate, 
NK cells that also express the T-cell receptor (NKT) were defined as cells that are CD3+ 
and CD16+ or CD56+.  Dendritic cells (DC) were enumerated from total white blood cells 
without anchoring on lymphocytes.  First, cells that expressed HLA-DR+ (MHC II) but 
lacked lineage-specific receptors (Lin-) for T (CD3-), monocytes (CD14-), NK cells 
(CD16- and CD56-), B cells (CD19- and CD20-) were first gated to selectively quantify 
DC.  Within this gate, myeloid-derived DC (mDC) were defined as CD11c+CD123- and 
the reciprocal CD11c-CD123+ population was used to quantify plasmacytoid dendritic 
cells (pDC).
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As seen in Table 3.5 Distribution of Leukocytes including T-cell subsets, NK 

cells and DC subsets on page 78 and Figure 3.4 Distribution of Leukocytes including T-

cell subsets, NK cells and DC subsets on page 80, IBC has a significant increase in the 

percentage of CD3+ T cells of about 5 percentage points compared to LABC, MIBC, and 

HD (p = 0.037, 0.022 and 0.002, respectively).  While this change is significant, it is 

unlikely to be of biological significance; indeed, the absolute count of T cells is not 

significantly different from HD (p = 0.220).  Although this is whole blood and not tumor, 

it should be noted that the presence of tumor infiltrating T cells is well established as a 

positive predictive factor in breast cancer (123). 

B cells are reduced in IBC 

Instead this number is capturing the reciprocal decrease in CD19+ B cells.  A 

shortage of B cells is one of the more prominent hematological characteristics of both 

IBC and other cancers (non breast: (124-128), after metastatic progression or before.  

Both IBC and MIBC have significantly lower percentage of B cells than HD (p = 0.001 

and p < 0.001, respectively).   

CD4 and CD8 T cells 

CD4 relative proportions of CD4 cells are high in IBC compared to HD (p = 

0.033) and MIBC (p = 0.008).  As the difference is small, this is likely due to the 

decrease in B cells noted above.   

 CD4 counts in metastatic disease, both MBC and MIBC are significantly 

depressed compared to HD (p < 0.001) and non-metastatic breast cancer (p = 0.001) and 

a similar pattern is seen with CD8 cells; however, IBC and MIBC are not significantly 

distinguished from LABC and MBC, respectively.   
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Recently, low CD4+ T-cell counts have been reported to be related to poor 

survival in both treatment naïve and chemotherapy-treated breast cancer patients (129).  

In this paper, they used a cut-off of 700 CD4+ T cells per microliter as the threshold for 

severe lymphopenia.  Interestingly, Manuel et al showed that in addition to the number of 

lymphocytes in blood, the diversity of the T-cell receptor repertoire is also an 

independent prognostic indicator factor of overall survival in breast cancer patients.  In 

this study, they used 23 PCR primer pairs upstream and downstream of VDJ 

recombination sites to enumerate the T-cell receptor diversity (130).  With next-

generation sequencing technology, it is now possible to have a much clearer 

understanding of this diversity.  I will be pursing this field of study as a postdoctoral 

fellow.   

 

CD4 cell counts were a significant predictor of progression free survival in breast cancer 

patients.  The cut-point of CD4+ T cells of 700 was a highly significant predictor of 

progression-free survival (PFS) in the whole cohort with a median survival of 10.0 

months for CD4 < 700 cells/µL but 23.3 months for CD4 > 700 cell/µL with a hazard 

ratio of (3.1, 95% confidence interval 2.7 to 9.70).  But CD4 count was not a significant 

predictor when looking at IBC, LABC, MBC, or MIBC separately, irrespective of 

metastasis, or treatment status, but was significant in both IBC and non-IBC (log rank p = 

0.004 and p < 0.001).  However, CD4 count was not predictive of overall survival (p = 

0.1761).  Furthermore, CD4 count failed to remain significant in a multivariate analysis 

that included stage (M1 vs. M0), presence of inflammatory features (IBC vs. non-IBC), 

hormone receptor (ER, PR) and Her2 status.  In this model, only metastasis (HR 6.0 p < 

0.001) and IBC (HR 1.7 p = 0.048) remained significant (note using CD4 count as a 

continuous variable in Cox multivariate analysis was a significant contributor to PFS).  
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T-Regulatory Cells are increased in MIBC   

The recent success of TReg target therapies such as anti-CTLA-4 or anti-PD-1 

confirms the relevance of T cells in tumor immunity (131-133) and suggests that 

restoration of the immune system could promote anti-tumor immunity.  It has been 

suggested that tumor evoked B-regulatory cells with constitutive high Stat3 can induce 

TRegs in breast cancer (134).  TReg cells inhibit cellular cytotoxicity responses and therefore 

play a key role in the development of immune evasion.  In these data, we see that patients 

with metastatic disease have higher levels of TReg than HD (MBC and MIBC vs. HD p < 

0.001 and p = 0.027, respectively) and higher than patients with non-metastatic disease 

(MIBC vs. IBC p = 0.079 and MBC vs. LABC p = 0.026).   

TReg require the T-cell growth factor IL-2 and express very high levels of the IL-2 

receptor-alpha CD25, which can be shed into circulation (sIL-2Rα) upon activation 

without decreasing the activity of IL-2(135).  Patients with increased levels of soluble 

CD25 (sIL-2Rα) had inferior overall survival.  It is likely that these high levels of 

sCD25Rα are shed from activated TReg.  Indeed, in HD, sIL-2Rα has a strong correlation 

with TReg count (Spearman ρ= 0.462, p = .0012).  Interestingly, there this correlation is 

lost in non-IBC patients (ρ = -0.133, p = 0.364) and reversed in IBC  (ρ = -0.242, p = 

0.046).  However, with the high number of samples that had sub-quantifiable levels of 

sIL-2Rα (50.6%), this should be viewed skeptically.   

In multivariate analysis including age, stage, IBC diagnosis, ER, PR and Her2 

status CD4 count and TReg count, both CD4 and Treg were significant predictors of 

progression-free survival and overall survival.  For PFS, high TReg had a hazard ratio of 

5.0 (95% CI 1.3 – 19.2, p = .018) whereas low CD4 counts had a hazard ration of 2.6 
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(95% CI 1.4 – 4.7, p = 0.002).  For OS, high TReg counts had a hazard ratio of 2.6 (95% 

CI 1.3 – 5.3, p = 0.010) and low CD4 counts had a hazard ratio of 2.4 (95% CI from 1.3 – 

4.7, p = 0.009).  TReg is a significant predictor of prognosis in both IBC and non-IBC. 

This suggests that TReg promote tumor growth by inhibiting T-cell function.  

 

Natural Killer (NK) cells 

IBC had significantly higher percentage of CD56dim compared to LABC (p = 0.037) while 

LABC had a significantly lower percentage of CD56bright regulatory NK than HD (p = 

0.014).  Together these suggest that IBC has less cytokine producing NK and a larger 

number of cytotoxic capable NK cells.  However, as we saw in Chapter 2, IBC also has a 

higher level of circulating TGF-β1 that may hinder the cytotoxic potential of these cells. 

This would be consistent with mouse data published by Olkhanud et al that shows that 

tumor metastasis in the 4T1 mouse model requires TReg (which are enhanced by TGF-β) 

to kill NK cells (136).  In this model, the authors showed that transferring 4T1 cells to a 

NOD/SCID mouse that lacks T and B cells but not NK cells failed to produce lung 

metastasis.  However, adoptively transferring splenocytes including TRegs or TReg alone 

allowed for the establishment of lung metastases.  In such a manner, there may be higher 

proportions of NK in circulation, but they may be unable to control tumor seeding in the 

microenvironment.  Furthermore, the cytotoxic potential of the circulating NK cells is 

unknown.  We have developed NK cytotoxicity tests that can be run on fresh, whole 

blood so that circulating soluble factors like TGF-β cellular factors like TReg can be 

included in the functional testing and we have just begun to test patient samples.  It will 

be interesting to see if higher levels of mature NK cells in IBC are fully capable of killing 

tumor cells.   
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Finally, peripheral blood dendritic cell subsets were enumerated. The percentage 

of mDC was significantly lower in IBC (median of 41.5% of Lin-HLA-DR+) than in 

LABC (median of 51.8%, p = 0.013).  Accordingly, IBC had significantly fewer mDC 

than LABC (p = 0.025) and both IBC and MIBC had significantly fewer mDC than HD 

(p = 0.001 and 0.004, respectively) as an absolute cell count.  Furthermore, IBC, MBC 

and MIBC not LABC had significantly fewer pDC than HD (p = 0.014, p = 0.004, p = 

0.024 and p = 0.421, respectively). 
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Table 3.5 Distribution of Leukocytes including T-cell subsets, NK cells and DC 
subsets 

Leukocytes were enumerated by FACS as shown in Figure 3.3 FACS Analysis of 
Leukocyte Subsets.  Each subset is shown first as a relative percentage and as an absolute 
count on the following line.  Lymphocyte subsets (T, B, and NK) are represented as 
percent of lymphocytes with the exception of TReg that are presented as percentage of 
CD4 cells.  Since they are not lymphocytes, the two dendritic cell subsets, mDC and 
pDC, are represented as the percentage of total Lin-HLA-DR+ cells.  Significant 
differences were determined by Mann-Whitney U test.   
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 Mean ± SEM by patient group  

Measurement IBC LABC MBC MIBC HD Significant 
Differences 

No. Patients 32 26 26 51 34  

%CD3 T 79.7 ± 7.3 75.3 ± 7.7 73.9 ± 10.6 75.3 ± 8.7 75.1 ± 6.5 a,c,e 

CD3+ T/µL 1517.9 ± 557.1 1557.5 ± 516.3 1023.7 ± 492.5 1100.5 ± 643.0 1681.4 ± 586.8 c,d,g,h 

%CD3+ CD4+ Th 52.0 ± 8.6 50.0 ± 7.3 45.2 ± 10.5 45.4 ± 11.4 47.6 ± 7.9 a,c,e 

CD3+ CD4+ Th/µL 993.3 ± 397.1 1041.2 ± 396.3 646.4 ± 347.9 687.3 ± 463.4 1064.8 ± 376.7 c,d,g,h 

%CD3+CD8+ Tc 21.7 ± 9.7 20.7 ± 5.3 23.4 ± 8.5 24.7 ± 11.0 21.6 ± 6.0 n.s. 

CD3+CD8+ Tc/µL 410.5 ± 218.2 424.9 ± 159.9 311.0 ± 162.7 345.0 ± 266.2 483.1 ± 240.2 d,g,h 

%TREG in CD4 7.0 ± 2.2 6.7 ± 1.9 9.0 ± 2.7 7.9 ± 2.2 6.9 ± 1.8 d,g,h 

TREG/µL 68.8 ± 30.9 69.1 ± 27.4 53.5 ± 27.0 52.5 ± 39.1 73.5 ± 32.1 c,g,h 

%CD19+ B 9.5 ± 4.3 10.2 ± 3.9 11.4 ± 6.1 9.0 ± 5.7 12.4 ± 4.5 e,h 

CD19+ B/µL 176.2 ± 89.0 211.2 ± 99.2 166.3 ± 128.3 143.1 ± 148.0 292.1 ± 170.7 e,f,g,h 

%CD56dim NK 6.0 ± 3.7 6.3 ± 4.4 6.8 ± 5.0 7.3 ± 5.2 6.7 ± 3.6 n.s 

CD56dim NK/µL 108.7 ± 64.3 126.9 ± 81.8 102.4 ± 88.4 101.5 ± 86.5 133.9 ± 68.1 h 

%CD56bright NK 0.3 ± 0.3 0.2 ± 0.2 0.5 ± 0.7 1.6 ± 9.2 0.3 ± 0.2 f,d 

CD56bright NK/µL 4.9 ± 7.4 3.6 ± 3.1 7.4 ± 10.3 18.2 ± 103.0 5.8 ± 3.6 e,f,h 

%mDC in linneg HLA-DR+ 40.2 ± 12.1 48.3 ± 10.8 46.8 ± 20.0 42.3 ± 16.2 49.5 ± 11.4 a,e,h 

mDC/µL 5.0 ± 3.5 8.2 ± 7.0 7.3 ± 8.8 6.0 ± 5.4 8.3 ± 5.7 a,e,h 

%pDC in linneg HLA-DR+ 17.9 ± 6.7 21.5 ± 10.2 16.8 ± 8.0 20.2 ± 12.0 20.3 ± 9.9 n.s 

pDC/µL 2.2 ± 1.6 3.8 ± 4.9 1.8 ± 1.3 3.8 ± 10.4 3.4 ± 2.2 e,h,g 

a IBC vs. LABC p < 0.05 
b MBC vs. MIBC p < 0.05 
c IBC vs. MIBC p < 0.05 
d LABC vs. MBC  p <  0.05  
e HD vs. IBC p < 0.05 
f HD vs. LABC p < 0.05 
g HD vs. MBC p < 0.05 
h HD vs. MIBC p < 0.05 
n.s. no significant difference
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Figure 3.4 Distribution of Leukocytes including T-cell subsets, NK cells and DC 
subsets 

Cell counts of peripheral blood agranulocyte (mononuclear) leukocyte subsets were 
evaluated in IBC, LABC, MBC and MIBC patients.  The top figure shows median cell 
counts and the radar plots below show relative proportions on the left and cell counts on 
the right.  As in the previous figure, the radar plots show standardized values to healthy 
donors (HD = 1) so that all subsets are on the same scale.  Note that radar plots are 
calculated with mean values (to generate a Z-score) and may be affected by outliers.   P-
values reported in the text are from non-parametric tests to correct for this effect.  
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Figure 3.5 Progression free survival is decreased in lymphopenic patients  
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In summary, patients with IBC present a few hematopoietic differences from LABC such 

as decreased mDC, increased CD56dim NK and the percent of CD3 cells.  However, for 

the most part, the hematology of locally advanced disease is fairly normal.  Metastatic 

disease, however, is characterized by severe lymphopenia that is related to decreased 

overall survival.  
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Chapter 4: Inflammatory Breast Cancer T and DC Functional 
Studies Profile 
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INTRODUCTION 

As mentioned in Chapter 2, T cells are responsible for shaping the adaptive 

immune response. Both CD4+ T-helper cells (Th) and CD8+ cytotoxic are capable of 

producing cytokines.  However the type and quantity of the response can greatly alter the 

inflammatory milieu and weather the immune system promotes immune surveillance to 

prevent tumor growth or provides a permissive environment.  In Chapter 5, we provide 

evidence that the inflammatory immune response can even promote cancer progression 

by inducing epithelial to mesenchymal transition.   

 Upon recognizing its cognate antigen, the activated T-cell responds by producing 

cytokines that “help” the immune process, which will be explored in the following 

chapter.  Type-I cytokines (TH1) promote the cytotoxic immune response while type-II 

cytokines (TH2) promote the humoral response and inhibit the cytotoxic response.  To a 

certain extent, in a fully mature effector cell, these responses are mutually exclusive and 

the polarization is fairly implastic.  Th1 cells are stimulated by IL-12 and IFN-γ.  IL-2 is 

generally considered to be a TH1 cytokine, although it is a growth factor for all cells 

including TRegs.  TH1 cells activate, CD8+ cytotoxic T lymphocyte, NK and macrophages 

and thus are generally considered to have potent anti-tumor properties.  IL-4 is actively 

inhibited in these cells. Th2 cells, in contrast are stimulated by and produce IL-4.  Other 

Th2 cytokines include IL-6 and IL-10.  Recently, a fourth class of Th cells has been 

identified.  TH17 cells, associated with killing extracellular pathogens and auto-

immunity, produce large of amounts of IL-17.  TH17 cells are induced by TGF-β, IL-6 

and IL-1β while IL-23 servers as a renewal factor.  TNF-a is produced by all T-cells but 

since it is pro-inflammatory, it will be classified as TH1 here.     
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It is important to note that the antigen-presenting cell that initiates the T cell 

response is not a passive bystander.  On the contrary, in concert with the 

microenvironment milieu, three critical signals are provided to the naïve T-cell.  First is 

the antigen/MHC complex.  As the majority of T-cells will have very low affinity for the 

antigen/MHC complex, they will not be activated.   

After recognizing antigen/MHC complex, T-cells must receive a co-stimulatory 

signal from the antigen-presenting cell to ensure that the T-cell is responding to a foreign 

of dangerous antigen.  Antigen presenting cells express CD80 and CD86 that binds CD28 

on the T-cell.  Without this signal, the T-cell will become anergic and no longer respond 

to antigen stimulation, if in the presence of both signals.   

The third signal includes inflammatory signals from the microenvironment.  As 

the antigen presenting cells is in prolonged, close contact with the T-cell, it can produce 

very high local concentrations of cytokines.  Exposure to IL-12 will favor a TH1 

response that is associated with anti-tumor activity whereas IL-10 will oppose the TH1 

response. 

Therefore, to understand the possible role of the immune system in IBC, counting 

cells is not sufficient.  Here we present functional tests that assess the propensity of T-

cells to produce cytokines in IBC.  This suggests the TH1, TH2, Th17 polarization.  Then 

we will look at IBC dendritic cell ability to present antigen by the upregualtion of 

costimulation molecules and cytokine production.
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Illustration 4.1 T-cell polarization 

Antigen-presenting cells such as dendritic cells process and present antigen to T cells.  
The cytokine milieu of an activated naïve T cell determines the polarization the T cell 
that will be largely maintained on subsequent activation.   TH1 cells synthesize IFN-γ 
and other cytokines and are involved in cell mediated immunity and tumor surveillance.  
TH2 cells synthesize IL-4 and are involved in the humoral response and are typically 
considered to promote tumor survival.  TH17 cells synthesize IL-17 and other highly 
inflammatory factors to protect against extracellular bacteria but have been implicated in 
autoimmunity.  TReg cells can be produced in the thymus or induced in the periphery and 
produce TGF-β and IL-10 as immunomodulatory factors.  Adapted from 
livingwellnessblog.  Th0 – Naïve CD4+ T helper cell, Th – Helper T cells, Treg – 
Regulatory T cells, IL- Interleukin, TNF-α– Tumor necrosis factor alpha, IFN-γ – 
Interferon gamma, TGF-β – transforming growth factor-beta.  
 



www.manaraa.com

 

 91 

Th0$

Th17$

Th1$

Th2$

Treg$

Naïve&

T&cell&

An,gen&
Presen,ng&Cell&

IL46,&IL41β,&(TGF4β)&

IF
N4
γ&

IL44&

TG
F4β
&

(ed
uc
ate

d)&

IL42&
IFN4γ&
TNF4α&

IL44&
IL45&
IL46&
IL410&
IL413&

IL417&
IL421&
IL422& TGF4β&

IL410&

Treg$
! Immune&Tolerance&
! Lymphocyte&homeostasis&
! Regula,on&of&immune&
response&

! Immune&Suppression&

Th2$
! An,body4mediated&
immunity&

! Extracellular&parasites&
! Asthma,&allergy&

Th1$
! Cell&mediated&immunity&
and&inflamma,on&
! Intracellular&pathogens&
! Autoimmunity&
! Inflamma,on&

Th17$
! Extracellular&bacteria&
! Fungi&
! Autoimmunity&

RORγT&

FoxP3&

Gata3&

T4bet&



www.manaraa.com

 

 92 

POPULATION STUDIED AND METHODS OVERVIEW 

As in Chapter 3, patients were recruited under protocol Lab08-019.  Peripheral 

blood was obtained from 32 IBC patients, 26 LABC, 26 MBC 54 MIBC and 34 HD 

(refer back to Table 3.1 on page). 

To test T-cell function and polarization, thawed peripheral blood mononuclear 

cells (PBMC, white blood cells consisting of monocytes, T-, B- and NK- lymphocytes 

and dendritic cells but depleted of granulocytes and red blood cells by density 

centrifugation with soluble factor from serum washed away) were stimulated overnight 

with plate immobilized anti-CD3 antibody that activated T-cells by cross-linking the 

clustering the T-cell receptor (TCR).  Anti-CD28 antibody was added to provide co-

stimulation so that patient antigen presentation is not a factor in the test. The percent of 

cells producing cytokines was measured by flow cytometry by blocking golgi transport so 

that cytokines accumulate in the cell following synthesis.  See Chapter 7 for methods. 

Dendritic cell function was measured in two assays.  Both interrogate DC 

response following activation through the innate receptors toll-like receptor 7 and 8 

(TLR7 and TLR8).  TLR7 responds to single stranded RNA in endosomes and therefore 

is a good model for stimulation by generic microRNA.  TLR8 recognizes GC-rich 

nucleotides (oligo-GC).  In the first assay, fresh, whole blood was stimulated for 4 hours 

to test for cytokine synthesis.  In the second assay, fresh whole blood was stimulated 

overnight to test for upregulation of co-stimulatory molecules and activation markers.  

IBC T CELL FUNCTION IS MOSTLY NORMAL BUT ENRICHED FOR TC17 

 

The only cytokine with significant differences in synthesis between IBC and 

LABC is the percentage of CD4 cells producing IL-10.  IBC patients had median serum 
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levels of 5.3 pg/mL while LABC had 2.9 pg/mL (p  = 0.029).  As IL-10 is often anti-

inflammatory, this is consistent with the higher levels of TGF-β1 observed in serum.  

 In fact, serum TGF-β1 correlated with the relative proportions of both CD4 and 

CD8 cells producing IL-10 (Pearson ρ = .198, p < 0.023 and ρ = .197, p = 0.024, 

respectively).  In IBC patients, the CD4 IL-10-serum TGF-β correlation was even 

stronger (Pearson ρ = .344, p = 0.007).  Furthermore, in IBC patients sIL-2Rα, shed from 

activated Th and TReg was also strongly correlated with IL-10 production by both CD4 

and CD8 cells (Pearson ρ = .480, p < 0.001 and ρ = .436, p < 0.001, respectively).  As 

TReg perpetuate the anti-inflammatory signaling of IL-10 and TGF-β, this suggests that 

closer study of TReg in IBC are warranted even though no differences in circulating TReg 

were observed.  However, metastatic disease presents a different picture. CD8 IL-10 

producing cells in MIBC are significantly reduced in both relative proportion (p = 0.01 

vs. HD and p = 0.017 vs. IBC) and number (p < 0.001 vs. HD and p = 0.004 vs. IBC) 

while the proportion of few other T cells are similarly affected.  Only IL-4 (another 

cytokine that inhibits the cellular response) is reduced in MIBC (p = 0.012).  

Compared to healthy donors, IBC cytokine production is fairly normal although 

there is a weak trend for IBC T cells to be more reactive.  This is consistent with the data 

published by Mourali and Levine over 30 years ago (5) and suggests that IBC patients are 

not immune suppressed and are capable of producing inflammatory factors in response to 

stimuli.   

However, upon inspection of the standardized “radar” plots in Figure 4.1 on page 

98, two features are prominent.  Breast cancer leukocytes are greatly enriched for CD8+ 

T cells producing IL-17 and to a lesser extend IFN-γ.  Compared to HD, IBC had 

significantly enriched CD8+ T cells synthesizing IFN-γ (p = 0.032) and a nearly 

significant increase in CD8+ T cells producing IL-17 (p = 0.058).  However, treatment 
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naïve IBC patients had significantly higher proportions of CD8+ T cells that produced 

IL-17 (p = 0.045).  This is an intriguing finding for IBC.   

IL-17 producing T-cells (TH17 and TC17) have recently been described as 

separate and unique from the traditionally acknowledged TH1/TH2 dichotomy.  As 

originally described, these cells play a critical role in experimentally induced 

autoimmune encephalomyelitis (EAE) where they have been shown to be the critical cells 

responsible for autoimmune reactions (137).  IL-17 knock-out mice are incapable of 

inducing an auto-immune response.   

There has been considerable controversy over the role of IL-17 in tumor 

progression.    

For example, IL-17 induces a number of pro-angiogenic factors such as VEGF, 

macrophage inflammatory protein-2, and prostaglandin E1 and E2 from tumor and tumor 

stromal cells (138).   In vivo, mice with IL-17 overexpression have increased tumor 

microvessel density compared with IL-17 -/- mice (138, 139).  

Furthermore, although MIBC patients are severely lymphopenic, they do not have 

a reduction in these cells.  In psoriasis-like skin inflammation, the majority of CD8+ T 

cells infiltrating the skin co-express both IL-17 and IFN-γ and are able to orchestrate skin 

inflammation (140).  As IBC is a skin disease, this can be highly relevant.  Recently 

classified as Tc17 cells, The IL-17+ CD8 T cells are a strange subset.  Although CD8+ T 

cells are generally strong cellular killers, TC17 cells have been shown to produce the 

highly inflammatory factors associated with inflammation, but lack the cytotoxic effector 

molecules such as granzyme B (141).  As such, patients with high levels of Tc17 cells 

may be subjected to highly levels of inflammation, but have a deficit in the tumor 

controlling TH1 response.    
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No differences in T cell cytokines synthesis were observed between MBC and 

MIBC in all patients or in treatment naïve patients (all p > 0.05).  Consistent with the 

reduced cellular immunity profile noted above, MIBC patients have significantly higher 

percentages of CD8+ T cells that produced IL-10.   

Looking at absolute counts of cells (cells/µL) in treatment naïve patients, MBC 

consistently (but not significantly) displays fewer inflammatory cells than MIBC 

(“inflamocytopenia”?).  Notice in Figure 4.1D the green MBC line is clearly “inside” the 

purple MIBC line.  It should be noted that all absolute counts are essentially derived form 

the white blood count (discussed in Chapter 2).  Any variance in this measure will 

propagate throughout the dataset.  With that consideration (and the additional caveat that 

the number of untreated MBC patients in this study is very small), this suggests that prior 

to treatment, there are more inflammatory-cytokine producing cells in MIBC than in 

MBC.  Furthermore, TNF-α synthesis in particular seems to be elevated in MIBC relative 

to MBC.  While this study is performed on blood cells and not on tumor infiltrating 

lymphocytes (a protocol to test this has recently opened), and uses polyclonal activation 

rather than antigen specific stimulation, this data gives us an idea of how T-cells will 

respond when they encounter antigen within the tumor microenvironment: simply that 

there are a larger number of cells capable of producing inflammatory factors in IBC.  In 

Chapter 5 we hypothesize that inflammatory factors derived from these cells such as 

TNF-α drive the metastatic progression by promoting epithelial to mesenchymal 

transition.  A unique response to this increased source of inflammation might contribute 

to the distinctive features and rapid progression characteristic of IBC. 
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Table 4.1 

T cell cytokine production.  Peripheral blood mononuclear cells were stimulated 
through the TCR with immobilized anti-CD3 antibody and soluble anti-CD28 antibody 
overnight to elicit cytokine synthesis.  The percentage of cells producing cytokines was 
enumerated by flow cytometry.  Data are shown as the mean ± s.e.m. percentage of 
CD4+ T or CD8+ T cells synthesizing cytokine or standardized to the number of CD4+ T 
cells  or CD8+ T cells per µL of blood that can produce cytokine upon stimulation.  
Statistics are based on the non-parametric Mann-Whitney U test.   
 
 
a IBC vs. LABC p < 0.05 
b MBC vs. MIBC p < 0.05 
c IBC vs. MIBC p < 0.05 
d LABC vs. MBC  p <  0.05  
e HD vs. IBC p < 0.05 
f HD vs. LABC p < 0.05 
g HD vs. MBC p < 0.05 
h HD vs. MIBC p < 0.05 
n.s. no significant difference  
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    Mean ± S.E.M.      

   
IBC LABC MBC MIBC HD Sig. Differences 

N    29 25 25 42 26  
 

TH1 
IFN-γ CD4 % pos. 11.6 ± 6.4 11.3 ± 6.4 10.2 ± 6.1 9.0 ± 6.1 9.0 ± 5.0 n.s. 

cell/µL 110.8 ± 65.8 111.4 ± 68.2 64.6 ± 54.9 56.8 ± 52.4 78.5 ± 41.6 c,d,f,h 
CD8 % pos. 16.3 ± 9.1 14.2 ± 7.7 13.6 ± 8.6 10.8 ± 7.2 11.2 ± 7.2 c, e 

cell/µL 69.4 ± 54.8 59.9 ± 32.3 48.6 ± 43.4 36.2 ± 41.1 43.5 ± 32.7 c,f 
IL-2 CD4 % pos. 15.4 ± 7.3 13.0 ± 7.0 13.2 ± 7.9 13.5 ± 9.9 15.1 ± 8.2 n.s 

cell/µL 158.9 ± 103.3 138.1 ± 93.9 94.0 ± 80.6 81.0 ± 81.9 139.6 ± 86.0 c,h 
CD8 % pos. 7.0 ± 5.8 7.0 ± 6.1 6.7 ± 5.0 5.8 ± 5.8 6.4 ± 6.0 n.s. 

cell/µL 22.8 ± 13.9 31.7 ± 34.7 21.2 ± 16.7 19.1 ± 29.0 25.4 ± 26.2 c 
TNF-α CD4 % pos. 22.8 ± 9.9 21.9 ± 11.1 20.1 ± 10.9 19.3 ± 12.0 22.4 ± 10.5 n.s 

cell/µL 228.9 ± 123.6 232.7 ± 150.8 136.7 ± 107.3 119.6 ± 111.6 208.4 ± 110.5 c,d,g,h 
CD8 % pos. 14.3 ± 8.7 15.9 ± 10.5 12.2 ± 7.6 10.2 ± 8.1 12.7 ± 8.5 c 

cell/µL 51.6 ± 31.7 69.5 ± 59.3 38.0 ± 27.5 33.2 ± 38.8 49.7 ± 37.5 c,d,h 
TH17 IL-17 CD4 % pos. 2.9 ± 1.4 2.6 ± 1.3 3.2 ± 2.6 2.9 ± 1.9 2.8 ± 1.4 n.s. 

cell/µL 27.6 ± 13.9 27.1 ± 16.3 17.5 ± 14.3 16.9 ± 15.9 25.5 ± 12.2 c,d,g,h 
CD8 % pos. 2.2 ± 2.3 2.2 ± 1.7 2.3 ± 3.2 1.5 ± 1.5 1.1 ± 0.9 f 

cell/µL 8.3 ± 8.0 9.1 ± 8.6 6.7 ± 9.6 4.7 ± 5.1 4.9 ± 4.1 c,d,f 
TH2 IL-10 CD4 % pos. 6.3 ± 4.7 3.9 ± 2.4 5.1 ± 5.0 5.2 ± 3.9 5.7 ± 3.7 a 

cell/µL 63.0 ± 51.1 43.8 ± 34.0 29.5 ± 24.7 30.0 ± 27.9 55.9 ± 43.1 c,g,h 
CD8 % pos. 5.3 ± 4.4 3.7 ± 2.4 3.3 ± 2.7 3.3 ± 2.7 4.7 ± 2.8 n.s. 

cell/µL 21.3 ± 20.9 15.3 ± 10.9 9.6 ± 8.3 9.7 ± 7.8 20.0 ± 11.9 c,g,h 
IL-4 CD4 % pos. 2.3 ± 1.3 2.4 ± 1.6 2.8 ± 2.1 2.1 ± 1.5 2.9 ± 1.3 h 

cell/µL 1.5 ± 1.3 1.8 ± 1.4 1.4 ± 1.0 1.1 ± 0.7 1.2 ± 0.9 c,g,h 
CD8 % pos. 23.4 ± 16.1 24.4 ± 18.4 14.6 ± 9.3 12.2 ± 10.2 28.3 ± 16.4 n.s. 

cell/µL 5.6 ± 5.7 8.4 ± 9.1 4.3 ± 3.4 3.3 ± 3.0 4.9 ± 3.4 h 
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Figure 4.1 

 
T cell cytokine production.  Peripheral blood mononuclear cells were stimulated through 
the T-cell receptor (TCR) with immobilized anti-CD3 antibody and soluble anti-CD28 
antibody overnight to elicit cytokine synthesis.  The percentage of cells producing 
cytokines was enumerated by flow cytometry.  Data are shown as the mean percentage of 
CD4+ or CD8+ T cells synthesizing cytokine (A and C, top) or the number of CD4+ or 
CD8+ T cells per µL of blood that can produce cytokine upon stimulation (B and D, 
bottom).  The figures on the first page (A and B) show the data for all patients and the 
figures on the next page are restricted to treatment naïve patients.  As in previous figures, 
the radar plots show standardized values with HD = 1 so that all subsets are on the same 
scale.  Note that radar plots are calculated with mean values (to generate a Z-score) and 
may be affected by outliers.   P-values reported in the text are from non-parametric tests to 
correct for this effect.  
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DENDRITIC CELL FUNCTION 

As mentioned in Chapter 3, IBC has significantly fewer mDC than LABC.  

However, the ability of those cells to produce cytokines and present antigen could be 

critical to tumor and immune surveillance and the regulation of inflammatory processes 

in the tumor microenvironment.   

To assess these capabilities in DC, we stimulated whole blood with toll-like 

receptor (TLR) 7 and 8 and assayed for cytokine synthesis and surface expression of 

costimulatory molecules, activation and maturation markers.  In parallel, blood was left 

unstimulated to assess constitutive levels of activation.  Both myeloid dendritic cells 

(mDC) and plasmacytoid dendritic cells (pDC) were evaluated.  Cytokines included the 

inflammatory cytokine TNF-α, the TH1 cytokines IFN-γ and IL-12 and the anti-

inflammatory/TH2 cytokine IL-10.  Activation markers included CCR5, which is 

expressed on resting DC in the tissue, and CCR7, which helps activated DC home to the 

lymph node where they interact with T-cells.  Costimulatory molecules CD80 and CD86 

provide the crucial second signal to T-cells that licenses T-cell activation.  Finally, CD40 

is a TNF-receptor family member that ligates CD40L on T cells to activate both cells.  As 

this full complement of cell types, stimulation conditions and assayed molecules resulted 

in a huge amount of data; only the significant differences between IBC and LABC or 

MIBC and MBC will be presented.   

As seen in Table 4.2 and Figure 4.2 IBC has greater synthesis rates of 

inflammatory cytokines and poorer antigen presentation capability.  Compared to LABC, 

on a per cell basis (as measured by mean fluorescent intensity, MFI), IBC had greater 

constitutive amounts of TNF-α synthesis by pDC (p = 0.036).  Similarly, compared to 
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MBC, MIBC had greater constitutive and TLR-induced synthesis of IL-10 by mDC.  

Furthermore, IBC both and MIBC had greater induced expression of the activation 

marker CCR7 by both mDC and pDC than the non-inflammatory controls (LABC and 

MBC).  As IBC is characterized lymphatic invasion, increased expression of CCR7 

(which targets DC to the lymph nodes) will tend to bring these inflammatory cells in 

contact with tumor.    

 In contrast, although IBC DCs are more likely to become activated and 

migrate to the lymphatic vasculature, they are less likely to initiate a cytotoxic response 

when they arrive.  As seen in the following table and figure, compared to LABC, IBC has 

lower numbers of mDC constitutively expressing CD40, CD80 and CD86 (p = 0.001, 

0.011, and 0.017, respectively); lower numbers of cells capable of expressing CD80 and 

CD86 (p = 0.038 and 0.043, respectively) after exposure to TLR signaling; and lower 

numbers of pDC constitutively expressing CD86 (p = 0.001).  Similarly, compared to 

MBC, mDC from MIBC express lower levels of CD86 following stimulation.   

 

It should be noted that while increased expression of co-stimulatory molecules 

such as CD80 and CD86 show that a dendritic cell is capable of providing the required 

“signal 2” to T cells, measurement of these markers does not actually test the cells’ 

ability to present antigen.  An alternative approach would be to pulse DC with a recall 

antigen such as tetanus toxoid and measure T cell responsesresponse.  Furthermore, while 

TLR may be activated in response to antigen in the tumor microenvironment, neither the 

DC activation not T cell activation studies here test antigen specific responses.  
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Table 4.2 

Dendritic cell function.  Peripheral blood mononuclear cells were stimulated through the 
toll-like receptor (TLR) 7 and 8 for 4 hours to elicit cytokine synthesis or overnight to 
induce expression of stimulatory and activation surface proteins (TLR). In parallel, cells 
were left unstimulated to measure constitutive expression levels (US).  Marker expression 
was recorded as a mean fluorescent intensity (MFI) that correlates with the average 
number of receptors expressed on the surface of each cell.  The percentage of cells 
expressing activation and costimulatory molecules as measure by flow cytometry was 
used the enumerate cells per µL with the given expression pattern (#).  Data are shown as 
the mean ± s.e.m. percentage of mDC or pDC expressing marker or mean ± s.e.m MFI of 
the specific marker on mDC or pDC.  Statistics are based on the non-parametric Mann-
Whitney U test.   
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 Mean ± S.E.M.      

 
IBC LABC MBC MIBC HD 

Sig  
Differences 

n 32 26 26 51 34  
pDC TNF-α US MFI 249 ± 81 210 ± 82 253 ± 103 342 ± 638 213 ± 80 a 
mDC IL-10 TLR MFI 457 ± 289 388 ± 190 374 ± 206 655 ± 822 576 ± 221 b,e,f,g 
mDC IL-10 US MFI 325 ± 149 282 ± 124 281± 119 449 ± 505 377 ± 113 b,f,g 
mDC CCR7 TLR MFI 552 ± 220 393 ± 154 587 ± 314 580 ± 447 665 ± 592 a,d 
pDC CCR7 TLR MFI 1028 ± 6234 797 ± 513 1088 ± 770 1036 ± 694 1009 ± 631 a,d 
mDC CD80 TLR MFI 6015 ± 2075 6448 ± 3024 6896 ± 4017 4918 ± 2783 5375 ± 2684 b,c 
mDC CD86 TLR MFI 16953 ± 8254 19593 ± 11570 22444 ± 17519 13917 ± 8705 12660 ± 6926 b,e,f,g 
#mDC CD40 US 79.2 ± 173.3 250 ± 512 226 ± 491 253 ± 6023 127 ± 216 a,c,d,e 
#mDC CD80 TLR 4502 ± 3417 7227 ± 6552 6423 ± 7313 4554 ± 401 6638 ± 4240 a,e,h 
#mDC CD80 US 999 ± 1329 1921 ± 2045 1426 ± 1998 1106 ± 1465 1651 ± 996 a,e,g,h 
#mDC CD86 TLR 4843 ± 3541 7725 ± 6839 7268 ± 8683 5929 ± 5405 7117± 4244 a,e,h 
#mDC CD86 US 4609 ± 3554 7989 ± 6905 7045 ± 8503 5693 ± 5155 8126 ± 6151 a,e,h 
#pDC CD86 US 624 ± 681 1648 ± 2169 921 ± 1190 1744 ± 3948 1257 ± 973 a,d,e,g 

 
a IBC vs. LABC p < 0.05 
b MBC vs. MIBC p < 0.05 
c IBC vs. MIBC p < 0.05 
d LABC vs. MBC  p < 0.05  
e HD vs. IBC p < 0.05 
f HD vs. LABC p < 0.05 
g HD vs. MBC p < 0.05 
h HD vs. MIBC p < 0.05 
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Figure 4.2 

IBC dendritic cell function has high inflammatory cytokines and low antigen 
presentation.  Dendritic cells were assayed in fresh whole blood to determine cytokine 
production, activation markers, and antigen presentation capability. The same data are 
presented in the top and bottom plots.  The top “radar” plot shows Z-score standardized 
data to so that all variables are on the same scale.  The lower plots highlight differences 
between IBC and non-IBC.  The left plot shows IBC in red and LABC in blue whereas 
the right plot show MIBC in purple and MBC in green.  Bars are mean ± s.e.m.  
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In summary, there is a trend for inflammatory breast cancer patients to have greater 

numbers of cells, both T and DC, capable of producing inflammatory cytokines when 

activated.  Furthermore, there is an increased prevalence of DC and T cells (possibly TReg) 

that produce IL-10 and CD8+ T cells that produce IL-17 (Tc17) suggesting that there 

may be a deficit in cell-mediated cytotoxicity. In the next Chapter, we will test weather 

activated cells are capable of inducing aggressive features in IBC and non-IBC cell lines.   
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Chapter 5: Immune cells induce epithelial to mesenchymal 
transition in inflammatory breast cancer cells 
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ABSTRACT 

Inflammatory breast cancer is the most insidious form of locally advanced breast 

cancer, characterized by diffuse inflammation of the breast.  The disease progresses 

rapidly with about 1/3 of patients having distant metastasis at staging.  However, it is 

unknown if inflammation could contribute to the rapid progression associated with IBC.  

Here we ask whether soluble factors from activated immune cells are capable of inducing 

IBC cells to undergo epithelial to mesenchymal transition (EMT), a cellular program 

associated with increased migration and invasion that is necessary for metastasis.  We 

found that conditioned media (CM) from activated T-cells induces IBC cells to express 

many factors related to the EMT program including fibronectin, vimentin, 

transglutaminase 2 (TG2) and ZEB1.  Interestingly, although invasion and migration 

increased, E-cadherin, a cell-adhesion molecule typically expressed in IBC tissue, also 

increased following exposure to immune factors.  The increased expression of E-cadherin 

was observed in 3 of 4 IBC cell lines but in none of the non-IBC lines examined.  A 

combination of TNF-α, IL-6, and TGF-β was able to recapitulate the EMT induction in 

IBC and CM pre-absorbed with neutralizing antibodies against these factors decreased 

EMT.  These data suggest that release of TNF-α, IL-6 and TGF-β by activated immune 

cells are capable of inducing EMT in IBC cells and thus, may contribute to the 

aggressiveness of IBC.   
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INTRODUCTION 

 

Inflammatory breast cancer (IBC) is the most aggressive form of locally advanced 

breast cancer.  It is characterized by diffuse erythyma and edema of the breast often 

mistaken for mastitis.  Yet it is often said that IBC is not a true inflammatory condition, 

with inflammation arising from the characteristic tumor emboli blocking the dermal 

lymphatics.  The tumor progresses quickly often within a few weeks or months and is 

often metastatic at diagnosis.  The rapid onset of metastasis suggests that tumor cells are 

disseminating through the lymphatics or blood at an early stage of disease.  However, 

although tumor cells are in regular contact with immune cells trafficking through the 

lymphatics, they are not killed by immune cells and suggest a blunted or immune 

suppressed response.  In contrast, Mouliari and Levine postulate that since IBC patients 

(referred to as rapidly progressing breast cancer) are able to produce delayed-type 

hypersensitivity reactions to standard recall antigens and at least one breast tumor lysate, 

that IBC patients may in fact present with an augmented cellular immune response to 

tumor (5).  However, the effect of this postulated immune response on the tumor cells 

and their metastatic potential is only beginning to be explored.  Recently, Mohammed 

and colleagues showed that when factors secreted by the monocytic cell line U937 are 

added to cultures of the IBC cell line SUM149, the tumor cells develop enhanced 

migratory and invasive features (142)  and increased expression of fibronectin (143).  

Activated immune cells are known to produce factors such as TNF-α, IL-6, IL-1β and 

TGF-β.  These characteristics suggest that immune cells may induce an EMT in IBC.   
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EMT is a set of biological processes that occur as epithelial cells loose their 

sedentary characteristics and gain a motile phenotype.  EMT as described by Elizabeth 

Hay (144) is important during physiological roles such as embryogenesis where cells 

migrate during gastrulation or neural crest formation (145).  Kalluri and Weinburg coin 

such processes type I EMT (146) and express genes such as Sox, Snail, and Slug which 

encode transcription factors that control EMT.  Type II EMT involved in wound repair, 

tissue regeneration, and fibrosis is characterized by inflammation.  TGF-β signaling is 

frequently involved.  Neoplastic cells undergoing type III EMT hijack hallmarks of both 

of these programs producing a metastatic pathology.  EMT is characterized primarily by a 

loss of E-cadherin expression.  Transcription factors such as Snail (147), Slug (148) and 

Zeb1 (149) bind directly to E-box regions in the E-cadherin promoter and repress protein 

expression (144).  Twist (150), Mesenchyme Forkhead 1 (FoxC2) (151) and tissue 

transglutaminase (TG2) (152, 153) have also been shown to regulate EMT.  We have 

recently demonstrated that detection of any of these EMT-related transcription factors 

(EMT-TFs) in the peripheral blood of breast cancer patients can serve as a surrogate for 

circulating tumor cells (CTC) in breast cancer patients (154).   

 Although cytokines such as TNF-α, TGF-β1	  (155), IL-6 (156) and IL-1β 

have been shown to induce EMT in breast cancer cells, the source of these factors has not 

been studied.  In the current study, we activated freshly collected peripheral blood 

mononuclear cells (PBMC) from healthy donors (HD) to secrete soluble factors that, in 

turn, were added to cultures of SUM149 IBC cells.  We found that secreted factors from 

activated immune cells are capable of inducing EMT in IBC cells.   
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Cytokine Profile of primary human PBMC immune cell conditioned media 

 

To test the ability of primary human leukocytes to induce EMT in IBC cells, we 

cultured SUM149 cells in the presence of CM of PBMC cultures.  Bacterial 

lipopolysaccharide (LPS), a toll-like receptor (TLR)-4 agonist was used to generate 

conditioned media from activated monocytes (LPS-CM).  Plate-immobilized anti-CD3 

antibody plus soluble anti-CD28 antibody were used to generate conditioned media from 

activated T-cells (αCD3-CM).  PBMC were left unstimulated to generate control 

conditioned media (US-CM).  Each condition was cultured for 48 hours prior to 

harvesting.  Cytokine concentrations in the resultant CM samples were measured by 

Luminex multiplex bead assay and found to contain high levels of inflammatory 

cytokines including TNF-α and IL-6 (Figure 5.1 on page 114).  Compared to US-CM, the 

αCD3-CM contained at least a 100-fold increase in the following factors: IFN-γ, IL-1α, 

IL-1β, IL-2, IL-3, IL-5, IL-6, IL-9, IL-10, IL-12p40, IL-13, IL-17, monocyte chemotactic 

protein (MCP)-3, macrophage inflammatory protein (MIP)-1β, soluble CD40 ligand 

(sCD40L), soluble IL-2Rα/soluble CD25α (sIL-2RA), TNF-α, TNF-β and VEGF.  A 

100-fold increase or greater was likewise observed in the LPS-CM in the following 

cytokines: G-CSF, IL-1α, IL-1β, IL-1 receptor antagonist (IL-1RA), IL-6, IL-10, IL-

12p40, MCP-3, MIP-1α, MIP-1β, and VEGF.  In the 5 culture supernatants of PBMC 

activated for 48h with anti-CD3 antibody (αCD3-CM), TGF-β had a modest 1.6-fold 

increase; TNF-α had an average 101-fold increase; while IL-6 had an average 347-fold 

increase.  These data suggest that inflammatory cytokines previously shown to induce 

EMT (157) are secreted by activated immune cells.  
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Figure 5.1

Activated PBMC secreted EMT-promoting factors.  Healthy donor PBMC were 
stimulated with LPS, plate-immobilized anti-CD3 and soluble anti-CD28 antibodies or 
left unstimulated for 48 hours before conditioned media (CM) were harvested.  Cytokine 
concentrations in the CM supernatants were measured by Luminex multiplex array in 5 
representative HD.  (a) Relative expression of 46 cytokines, chemokines and growth 
factors.  (b) Relative expression of TNF-α, TGF-β and IL-6 in LPS-CM, αCD3-CM 
relative to US-CM (solid bars). 
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Immune conditioned media induces EMT transcription factors in SUM149 cells 

Epithelial to mesenchymal transitions (EMT) have been reported in response to 

inflammatory cytokines typically produced by products of activated immune cells such as 

TNF-α and TGF-β.  To test weather the full milieu of factors secreted by activated 

immune cells are capable of inducing EMT, SUM149 cells were incubated with αCD3-

CM, LPS-CM or US-CM.   

To test the effect of immune cells on breast cancer cells, immune CM was diluted 1:4 

with IBC media and incubated with established 2D cultures of SUM149 cells for 48 

hours prior to evaluating EMT (see Figure 5.2a on page 114).  After 48-hours, SUM149 

cells treated with αCD3-CM exhibited a mesenchymal or stressed morphology with 

elongated projections (Figure 5.2b).  Assessment of the SUM149 cells exposed to αCD3-

CM by qRT-PCR showed at least a 2-fold increase in transcripts of fibronectin, N-

cadherin, TG2, vimentin and ZEB1 and slightly less in SNAIL1.  Interestingly, although 

these increased EMT-related factors are typically associated with decreased E-cadherin 

expression, SUM149 cells showed a substantial increase E-cadherin expression in 

response to αCD3-CM (Figure 5.2c).  However, E-cadherin expression is a hallmark of 

inflammatory breast cancer and is typically highly expressed even in stage IV tumors.  

These data suggest that soluble factors secreted by activated immune cells are able to 

induce EMT in epithelial cells.  
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Figure 5.2 

Conditioned media from activated healthy donor PBMC induces expression of 
EMT-related transcription factors in SUM149.  (a) Healthy donor peripheral blood 
mononuclear cells were stimulated with LPS to stimulate monocytes, plate-immobilized 
anti-CD3 and soluble anti-CD28 antibodies to stimulate T-cells or left unstimulated for 
48 hours before conditioned media was collected.  These immune CM were added to 
established SUM149 cultures at 25% of media volume.  RPMI-1640 culture media was 
used as a negative control (0) and 2ng/mL TGF-β was used as a positive control.   
SUM149 cells were incubated with immune CM for 48 hours prior to mRNA extraction.  
(b) Morphological changes are consistent with stress and EMT can were observed at this 
time point. (c) Expression levels of EMT-related transcription factors SNAIL and ZEB1, 
and TG2 were quantified by Taq-Man® qRT-PCR.  αCD3-CM and to a lesser extent 
LPS-CM, induced large increases in ZEB1 and TG2.  



www.manaraa.com

 

 

118 

 

Healthy(
donor(
leukocytes(

IBC(Cell(line(

EMT(induc8on(

48hr(

CM(

S8mulate((

A(
SUM190 

IBC3 

SUM149 

KPL4 

B(

C(

Media( US?CM( LPS?CM( aCD3?CM( TGF?β(

SUM149

media US LPS αCD3 TGF-β
0.25

0.5

1

2

4

8

16

32

E-Cadherin
Fibronectin
N-Cadherin
SNAIL2
TG2
Vimentin
ZEB1

Conditioned media

Fo
ld

 c
ha

ng
e



www.manaraa.com

 

 119 

 

Immune conditioned media induces phenotypic changes in SUM149 cells 

MCF-7 breast cells were used as a representative epithelial cell line and MDA-

231 cells were used as a representative mesenchymal breast cell line.  Cells were grown 

on plastic, trypsinized and embedded in paraffin for immunohistochemistry (IHC) 

evaluation, as shown in Figure 5.3 on page 120.  MCF-7 cells expressed high E-cadherin 

and pan-cytokeratin but lacked expression of vimentin or cytokeratin (CK)5/6.  In 

contrast, MDA-231 cells stained for vimentin in greater than 50% of cells while lacking 

E-cadherin expression.  In these cells, cytokeratins (stained with an anti-CK antibody 

cocktail) are localized mostly to the cytoplasm and not at the membrane.  Punctate 

staining is suggestive of golgi localization.   

 SUM149 cells treated with αCD3-CM up-regulated the expression of 

vimentin and E-cadherin, similar to the gene expression data.  (However, LPS-CM 

treated cells showed a slight decrease in vimentin.)  Cytokeratin 5/6 staining, typical of 

basal-like breast cancers but not the MDA-231 cell line, increased following treatment 

with αCD3-CM.  Finally, pan-keratin localization to both the membrane and cytoplasm 

decreased following αCD3-CM treatment, consistent with decrease in epithelial structure.   

Together, the increases in vimentin and keratin 5/6 in conjunction with the decreased 

staining from the keratin cocktail suggest that activated immune cells induce breast 

epithelial cells to a more basal phenotype.  
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Figure 5.3 

 Immune conditioned media induces phenotypic changes in SUM149 cells.  Immune 
conditioned media (anti-CD3 CM) was added to established SUM149 cells and cultured 
for 2 days (black); MCF-7 and MDA-231 grown in standard media were used as controls 
(grey).  Paraffin-embedded cell blocks were prepared and analyzed by IHC.  Morphology 
of the cells is visualized with Diff-Quick stain.  The percentage of positive cells is listed 
in each image and shown in the bar graph at right.  Pan cytokeratin expression is shown 
for both percent of cells with membrane localization (top number) and cytoplasmic 
localization (bottom number).  MCF-7 cells show a characteristic epithelial phenotype 
with high E-cadherin, low vimentin, low keratin 5/6 expression and strong membrane and 
cytoplasmic localization of cytokeratins.  MDA-231 cells are mostly mesenchymal with 
low E-cadherin, high vimentin and decreased cytokeratin expression.  Following 
exposure to CD3-CM, SUM149 cells show increased expression of E-cadherin, vimentin, 
keratin 5/6 staining and decreased pan cytokeratin staining. (US-CM, Conditioned Media 
from unstimulated PBMC; LPS-CM, Conditioned media from LPS-stimulated PBMC; 
αCD3-CM, Conditioned media from PBMC stimulated through the T-cell receptor with 
immobilized ani-CD3 and soluble anti-CD28) antibodies.
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Immune Cell conditioned media induces EMT profile in multiple breast cell lines 

To test immune induction of EMT in additional genetic backgrounds, immune 

CM was added to a panel of breast cancer cell lines.  Cell lines included the non-

tumorigenic cell line MCF-10a, hormone receptor positive MCF-7, triple receptor 

negative and highly mesenchymal MDA-231, androgen receptor-positive MDA-453, and 

HER2-amplified SKBR3.  In addition, several IBC cell lines were evaluated including: 

HER2-amplified KPL4, SUM190, and IBC-3 cells.  As with the SUM149 cells, immune-

conditioned media was diluted 1:4 with IBC media and added to established 2D cultures 

of above-mentioned IBC cell lines for 2 days.  Cells were also treated with 2ng/ml TGF-β 

as a positive control for induction of EMT.  All cell lines were treated with the same pool 

of conditioned media. Cells exposed to immune CM are generally less dense and appear 

spindly and stressed.  To test for EMT-inducing transcription factors, RT-PCR was 

performed on mRNA extracted from the cell lines using the Fluidigm® Integrated Fluidic 

Chip Dynamic Array system to array the samples and the Fluidigm® BioMark™ HD for 

thermocycling and data acquisition.  Results are summarized in Figure 5.4.   In general, 

most cell lines showed increases in expression of EMT-related factors following 

treatment with immune CM.  ZEB1 and TGM2 were the most induced factors along with 

the inflammatory factors prostaglandin E (PGE) and IL-8.  Consistent with an induction 

of EMT, epithelial cell adhesion molecule (EpCAM) expression decreased with αCD3-

CM treatment in every cell line except SUM149.  However, as shown in Figure 5. 5, the 

EpCAM response is attenuated in all of IBC cell lines (p=0.0197).  Likewise, although 
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the non-IBC cell lines showed no change in E-cadherin expression at this time-point, 3 of 

the 4 IBC cell lines (SUM149, SUM190, IBC3 but not KPL4 cells) showed a paradoxical 

increase in E-cadherin expression (p = 0.0411).  Her2-amplification was also associated 

with an attenuated EpCAM response (p = 0.210 when SUM149 cells were removed from 

the analysis); however, it must be noted that 3 of the 4 Her2+ cell lines in this study are 

IBC cell lines and 3 of the 4 IBC cell lines are Her2+.  Comparing intrinsic molecular 

subtypes, luminal cells had a higher induction of Forkhead box protein C2 (FOXC2) than 

the basal-like cells MCF-10a, MDA-MB-453, and SUM149 cells following treatment 

with αCD3-CM (p = 0.0384) (although MDA-453 is TNBC, it is androgen receptor 

positive and not basal-like) (158-160).  While these data confirm that immune induction 

of EMT is common among a range of breast cancer subtypes, IBC cells have an abnormal 

response characterized by a shift towards EMT while maintaining or increasing 

homotypic adhesion.   
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Figure 5.4  

EMT induction by immune conditioned media is not unique to IBC.  Immune 
conditioned media from a single healthy donor was added to 2-day old cultures of 9 
breast cancer cell lines.  Thereafter, mRNA was isolated from the cultures and analyzed 
by qRT-PCR using TaqMan® hydrolysis probe assays on the Fluidigm® BioMarkTM HD 
system using a single 48.48 Dynamic Array Integrated Fluidic Circuit “chip”.  Data are 
represented as 2-∆∆Ct fold change with the unconditioned media for each cell line serving 
as the reference sample and GAPDH as the endogenous control.  Unconditioned media 
appears as a solid black line at 1 in the center of each plot; points falling outside or inside 
the black solid circle represent increased or decreased relative expression, respectively. 
αCD3-CM induced EMT-related transcription factors to varying degrees in all cell lines.  
Zeb1 and TG2 are the most consistently increased EMT-related factors across cell lines 
and are highlighted with asterisks.  
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Figure 5. 5 

 IBC has unique response to immune conditioned media.  Following treatment with 
αCD3-CM, IBC cell lines IBC-3, KPL4, SUM149 and SUM190 had a decrease in 
EpCAM mRNA compared to those of non-IBC cell lines and with the exception of 
KPL4, that had increased expression of E-cadherin.  
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Immune CM has minimal effect on mammosphere formation  

To test the functional changes associated with exposure to immune conditioned 

media, SUM149 cells were placed into mammosphere media following 2 day pre-

incubation with CM, as above.  Sphere forming efficiency in mammosphere media allows 

for enumeration of cells with the stem cell properties of self-renewal and differentiation 

potential (161, 162) that are associated with EMT (163).  Cells are added as a single cell 

suspension and grown in 3D.  After 1 week, “mammospheres” are counted.  As shown in 

Figure 5.6 on page 129, there was a non-significant trend towards increased sphere 

formation following incubation with αCD3-CM (0.43% vs. 0.50%, p = 0.256).  

Interestingly, the spheres forming from the αCD3-CM were significantly smaller than the 

spheres from cells grown in unconditioned control media (mean ± sem 175µm ± 5.7 µm 

vs. 150µm ± 9.6, p = 0.048).  This suggests that while EMT and stem cell-like properties 

may be induced by exposure to immune activated CM, proliferation is significantly 

inhibited, at least in short-term cultures. 
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Figure 5.6 

Immune conditioned media has negligible impact on mammosphere forming ability.  
SUM149 cells were pre-treated with conditioned media and placed into mammosphere 
media.  There was no significant increase in mammosphere formatting efficiency by 
immune conditioned media; however, there was a trend for αCD3-CM to have a higher 
sphere forming efficiency.  
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Real-time cell analysis reveals increased migration, invasion and adhesion following 
incubation with immune conditioned media.   

Changes in transcription factors could be identified following 48 hours of 

incubation with immune conditioned CM.  To understand the kinetics of this change, 

real-time analysis of cell growth was measured using the xCelligence real time cell 

analyzer (Acea Bioscicens, Inc, San Diego, CA).  This technology measures resistance to 

the flow of ionic electrical current (impedance) between electrodes laid out in a grid on 

the bottom of cell culture well in contact with the growing cells.  Measuring electrical 

impedance is both non-invasive and label free.  Impedance increases with a number of 

factors, primarily cell growth and adhesion.  As the surface area covered by the growing 

cells increases, there is less free surface area on the electrodes for the free flow of current.  

Similarly, as the cells adhere more closely to the substrate and to each other, impedance 

increases as ions cannot access the electrode beneath the cell (164).   The xCelligence 

system measures this impedance at a defined base-line and calculates changes as a cell 

index (165).  As such, the system can measure cell growth and adhesion, and with a 

modified Boyden chamber plate with the electrodes on the bottom of the membrane, 

migration can be measured as well as cells migrate unto the electrodes.    

Following addition of immune CM, changes could be detected within 10 hours 

(Figure 5.7 on page 133).  Interestingly, although αCD3-CM clearly decreased cell 

counts by the traditional trypan blue exclusion counting method (Figure 5.8 on page 135), 

the real-time analysis showed a marked increase in the Cell Index.  In fact, in 2 days, 

8x103 αCD3-CM treated SUM149 cells achieved a cell index about 2 times larger than 

20x103 SUM149 cells allowed to grow in IBC media for 5 days.  (20 x103 SUM149 had a 
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cell index of 2.54 after 22 hours of attachment and achieved a maximum cell index of 

3.09 at 70 hours, post seeding.  In contrast, 8x103 αCD3-CM-treated SUM149 had a cell 

index of 1.20 after attachment that rapidly increased to 3.1 within 14 hours of treatment 

and 6.07 within 43 hours of treatment).  As the Cell Index measured by the xCelligence is 

affected by cell morphology and adhesion in addition to cell growth, these data suggest 

that immune CM-exposed IBC cells adhere more tightly.  This increased adhesion is 

consistent with the observed increase in E-cadherin expression by IBC cell lines.   

 The increase in E-cadherin and EpCAM in IBC cells concurrent with the 

upregulation of EMT factors is inconsistent with current models for EMT.  We therefore 

tested the migratory ability of SUM149 cells exposed to immune conditioned media 

using the xCelligence system.  Using a CIM (cellular migration/invasion) plate we 

measured SUM149 cell migration towards fetal bovine serum (FBS, a common 

chemoattractant) following exposure to immune conditioned media.  The SUM149 cells 

show a very rapid increase in the cell-index of αCD3-CM-exposed cells suggesting an 

induced migratory capacity (Figure 5.7).  Similar migration patterns were observed when 

the plates were pre-coated with 15% MatrigelTM and when cells were pre-treated with 

immune CM for 48 hours and loaded into the chambers in equal numbers (data not 

shown).  Combined, these data show that the induced changes in IBC cells paradoxically 

increase both adhesion and migration.  
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Figure 5.7 

Immune Conditioned Media induces adhesion and migration in SUM149.  SUM149 
were grown on an xCelligence® E-plate at an initial density of 5x103/well and exposed to 
αCD3-CM, LPS-CM and US-CM at time 0.  Cell index, a statistic that summarizes cell 
number, viability, and morphology, is measured at 15-minute intervals.  The cell index 
was standardized at the vertical line, prior to adding the CM that can be seen on the graph 
as a transient spike in cell index.  Robust changes are observed at 9 hours after treatment 
with cells exposed to αCD3-CM showing rapid increases in cell index.  To quantify 
migration, 50x103 SUM149 cells in immune conditioned media were seed into the top 
wells of xCelligence CIM plates with FBS as a chemoattractant in the bottom wells.  
Migration is measured as an increase in impedance as cells migrate into the lower 
chamber.  Migration towards FBS is enhanced by immune activation factors.  αCD3-CM 
(blue line) induces rapid migration of SUM149 cells.  LPS-CM enhancement of 
migration (green line) is noted from 7 to ~36 hours, but is not significantly different from 
controls (US, Media, no FBS; red, pink and light blue) at later time points.  Error bars are 
one standard deviation.  
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Figure 5.8 

Immune Conditioned media decreases tumor cell proliferation.  Cells were seeded 
into 6-well plates at an initial titer of 75x103 cells per well.  After 2 days for cell 
attachment, CM was added to each well.  Following 2 days of culture with immune 
conditioned media, cell titers were determined by determining viable cell counts using 
the trypan blue exclusion method.  Cells exposed to αCD3-CM had cell counts lower 
than the initially seeded cells and lower than LPS-CM, US-CM or media control.  Both 
LPS-CM and αCD3-CM induced a fibrolblast-like cell morphology with longer 
projections and less of a cobble-stone appearance.  
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Neutralizing TNF-α , TGF-β and IL-6 reverses immune induced EMT 

Factors such as TNF-α, TGF-β and IL-6 have been associated with EMT 

induction were found elevated in cells exposed to αCD3-CM.  TNF-α induces signaling 

through NF-κB and IL-6 induces signaling through Stat3.  Therefore, if IBC cell cells are 

responding to TNF-α and IL-6 in the conditioned media, we would expect to see elevated 

levels of phosphorylated NF-κB (p65), the upstream IκB, and Stat3 in IBC cells 

following addition of immune conditioned media.  We measured phosphorylation levels 

of Stat3 (Ser727), Stat3(Tyr705), IκB (Ser32) and the p65 subunit of NF-κB (Ser536) in 

SUM149 cell lysates using Luminex multiplex polystyrene beads (Figure 5.9).  αCD3-

CM and LPS-CM induced Stat3 and NF-κB phosphorylation in SUM149 cells within 1 

hour that subsided over 2 days (the time course of the co-cultures shown above).  This 

supports the hypothesis that IL-6 and TNF-α are acting on the SUM149 cells.    

As shown above, addition of TNF-α, TGF-β, and IL-6 synergistically induced 

EMT in SUM149 cultures.  Therefore, we hypothesized that reducing these factors would 

mitigate the induction of EMT by immune activation.  To test this hypothesis, αCD3-CM 

was pre-absorbed with neutralizing antibodies prior to incubation with SUM149 culture 

and EMT-related transcripts were quantified, as before.  Compared with αCD3-CM, the 

pre-absorbed CM showed a reduction in E-cadherin, EpCAM, fibronectin, N-cadherin, 

SNAIL2, TG2, vimentin and ZEB1 (see Figure 5.10 on page 140).  This suggests that 

TNF-α, TGF-β and IL-6 are partially responsible for the immune changes observed in 

IBC cells.  
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Figure 5.9 

Immune conditioned media activates TNF-α, and IL-6 pathways in SUM149.   
Immune conditioned media (αCD3-CM, LPS-CM, US-CM, and media control) were 
added to established SUM149 cultures.  Cell lysates were collected after 10 min, 30 min, 
60 min and 2 days before being analyzed using Millipore Milliplex MAP polystyrene 
beads and quantified by mean florescent intensity (MFI) using the Luminex analyzer (the 
48 hour sample was only analyzed for αCD3-CM and media control).  Phosphorylation 
of Stat3 Ser727 and Tyr7005 were measured from the IL-6 signaling pathway and 
phosphorylation of IκB Ser32 and NF-κB p65 Ser536 were measured from the TNF-α 
pathway.  The MFI of each analyte was corrected with the GAPDH loading control for 
each sample to account for loading variation.  All four analytes show increased 
phosphorylation following addition of conditioned media from αCD3 and LPS activated 
PBMC but not unstimulted PBMC or control media.  



www.manaraa.com

 

 139 

M
FI

 T
ar

ge
t /

 G
A

PD
H

 

Time (hours:minutes) 

pStat3 (Ser727)

0:00 0:10 0:30 1:00 48:00
0.0

0.1

0.2

0.3

0.4

0.5
M

FI
 p

St
at

3 
(S

er
72

7)
 

/ M
FI

 (G
A

PD
H

)
pStat3 (Tyr705)

0:00 0:10 0:30 1:00 48:00
0.0

0.5

1.0

1.5

M
FI

 p
St

at
3 

(T
yr

70
5)

 
/ M

FI
 (G

A
PD

H
)

pIκB (Ser32)

0:00 0:10 0:30 1:00 48:00
0.00

0.01

0.02

0.03

0.04

0.05

M
FI

 p
Iκ

B
 (S

er
32

) 
/ M

FI
 (G

A
PD

H
)

pNF-κB p65 (Ser536)

0:00 0:10 0:30 1:00 48:00
0.00

0.01

0.02

0.03

0.04

0.05

M
FI

 p
N

F-
κB

 (S
er

53
6)

 
/ M

FI
 (G

A
PD

H
)

pStat3 (Ser727)

0:00 0:10 0:30 1:00 48:00
0.0

0.1

0.2

0.3

0.4

0.5

Time (hr)

M
FI

 p
St

at
3 

(S
er

72
7)

 
/ M

FI
 (G

A
PD

H
)

αCD3 LPS media US



www.manaraa.com

 

 140 

Figure 5.10 

TNF-α, TGF-β and IL-6 induce EMT in SUM149.  a) TNF-α, TGF-β and IL-6 were 
added to established SUM149 cultures and assayed for EMT-TF, as before.  All three 
cytokines act additively to induce EMT-TF. b) Neutralizing antibodies against TNF-α, 
TGF-β and IL-6 were added to αCD3-CM prior to incubating with SUM149 cells.  
Compared to αCD3-CM without neutralization, EMT-TFs were reduced. 
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Patient Data 

To determine whether increased cytokine production by activated immune cells is 

correlated with the induction of EMT in breast cancer patients, we compared the ability 

of peripheral blood T cells to produce TNF-α with the expression of EMT-transcription 

factors in blood (EMT-CTC).  Fresh 5 ml whole blood samples were depleted of CD45 

leukocytes and subjected to RT-PCR analysis for the measurement of EMT-related 

transcription factors.  Matched thawed archived peripheral blood mononuclear cells were 

stimulated overnight with plate-bound anti-CD3 and soluble anti-CD28 antibodies for 

measurement of intracellular TNF-α synthesis as measured by flow cytometry (166, 167).  

Matched data were evaluable from 16 breast cancer patients.   Six patients had detectable 

EMT-CTC.  Of these, 5 had greater than 220 CD3+ T cells per ml of blood capable of 

producing TNF-α upon activation (Fisher’s Exact test p = 0.036).  Although the numbers 

are very small, as seen in Table 5.1, higher numbers of TNF-α producing CD3+ cells are 

associated with an increase in EMT-CTC in breast cancer patients.  However, a CD3-

TNF count greater than 225 was associated with longer progression-free survival (p = 

0.001).
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Table 5.1 

T cells producing TNF-α correlates with EMT-CTC in patients.  As shown in 
Chapter 4, patients PBMC were stimulated through the T-cell receptor overnight and 
interrogated for intracellular TNF-α synthesis by multiparameter flow cytometry.  
Additionally, 5 mL of blood was depleted of CD45+ leukocytes to enrich for circulating 
tumor cells and interrogated for expression of EMT-related factors.  There was a 
significant correlation between the detection of at least 1 EMT-related factor in the CTC-
enriched fraction and presence of 225 CD3+ T-cells per µL of blood capable of 
producing TNF-α.  A cut-off of 225 cells per µL was established by receiver operator 
curve analysis.  
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CD3 Cells producing TNF-α 

       Total <225 >225 

EMT CTC no EMT 9 2 11 

any EMT 1 4 5 

                             Total 10 6 16 

 

χ2 Fisher Exact test p = 0.036
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Discussion 

	  

Here we show that inflammatory breast cancer cells respond to inflammatory 

signals from innate and adaptive immune cells with a program reminiscent of EMT that 

renders the tumor even more aggressive.  We used PBMC from healthy donors activated 

with LPS and immobilized anti-CD3 plus soluble anti-CD28 antibodies as a model for 

inducing inflammation.  To mediate cell-cell killing effects from HLA-mismatch, we 

collected only the conditioned media from the activated cells and applied it to established 

cultures of IBC cells.  In this model, SUM149 cells respond to immune induced 

inflammation with increased EMT factors as shown by PCR, stem cell properties as 

shown by mammosphere formation and migration as shown with the real-time cell 

analysis.  Paradoxically, unique to IBC, these changes were also associated with an 

increase in E-cadherin, EpCAM, and cell adhesion, all hallmarks of IBC.   

 TNF-α levels in the conditioned media of anti-CD3-stimulated PBMC 

were higher in than LPS conditioned media.  As TNF-α is known to induce EMT, this 

can partially explain the superior increase in EMT induction by anti-CD3-stimulated 

PBMC.  The differences in induced TNF-α levels may be related to cell number as T 

cells out-number monocytes in PBMC by about 4 to 1.  In fact, untreated IBC patients 

have significantly more monocytes than non-IBC patients.   

 

 While CD4+ and CD8+ T cells are capable of producing copious amounts 

of TNF-α and thus inducing EMT, our data show that T cell synthesis of TNF-α is 

positively correlated with survival.  This study used immobilized anti-CD3 antibody to 
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polyclonally activate peripheral blood T cells non-specifically through the T-cell receptor 

in both the enumeration of TNF-α producing T-cells in IBC patients and for the 

production of conditioned media from healthy donors.  These cells may not have the 

same cytokine response as tumor-infiltrating lymphocytes that conditioned the cytokine 

milieu in vivo (168, 169).  Conversely, parallel studies on TNF-α production by TLR-

activated peripheral blood dendritic cells were associated with shorter survival.  

Together, these observations suggest that although immune cells are capable of inducing 

EMT and potentially metastasis, the immune surveillance, particularly that provided by 

the adaptive immune system, may offer an important barrier to disease progression.  

Indeed, a recent Van Laere et al report showed that a gene signature associated with a 

TH1 immune response was associated with attainment of a pathological complete 

response in IBC patients (170).  

 

E-cadherin has represented a conundrum in IBC research.  In most carcinomas, 

loss of E-cadherin is associated with advanced disease and increased invasion and 

metastasis as the homotypic cell adhesions are decreased.  IBC, in contrast, has been 

shown to have high levels of E-cadherin expression despite the rapid progression of the 

disease.  In fact, tight clusters of tumor emboli are a hallmark of the disease.   

 

In this study, we showed that E-cadherin expression increased in IBC cell lines 

after exposure to αCD3-CM.  This is in contrast to the typical loss of E-cadherin 

expression at metastatic progression.  In experimental systems, loss of E-cadherin can 

induce increased invasiveness and metastasis.  As a cell-adhesion molecule, expression of 

E-cadherin on the cell surface prevents cell motility, invasion and metastasis.  However, 

loss of E-cadherin also increases several mitogenic signaling cascades including mitogen 
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activated kinase (MAP) and rat sarcoma viral oncogene (Ras).  Conversely, 

reintroduction of E-cadherin expression in poorly differentiated cell lines can restore an 

epithelial phenotype (for review see F.J. Rodriguez et al (171)).  Furthermore, E-cadherin 

can increase stem cell viability through upregulation of apoptotic inhibitory gene Bcl-XL 

and inhibiting Caspase-3 (172).  

 

However, inflammatory breast cancer tumors typically express high levels of E-

cadherin despite the highly aggressive nature and rapid progression of the disease.  

Although E-cadherin expression at the protein expression is elevated, mRNA levels are 

lower than other E-cadherin positive breast cancers due to altered protein trafficking 

(173).  Additionally, although IBC is typified by high levels of E-cadherin, constitutive 

SUM149 expression is low but can be increased with treatment with EGFR-targeted 

therapy as shown by Ueno and Zhang (73).   

 

In our survey of 9 breast cancer cell lines, we found that E-cadherin expression 

increased in 3 of the 4 IBC cell lines following exposure to immune factors.  In contrast, 

none of the non-IBC cell lines showed a similar increase.  It would be interesting to 

check in the NF-κB, SMAD or Stat response elements in IBC E-cadherin promoters are 

different from non-IBC (this is relatively easy to check in silico once a full sequence is 

available for IBC cell lines). 

The data here showed that spiking IL-6 into the media had little effect on the 

induction of EMT, yet depleting it form the conditioned media drastically reduced the 

observed EMT at the 2 day time point.  The real-time cell analysis experiments were not 

performed with neutralizing antibodies due to the difficulty in handling the cells in small 

volumes, but it might this might be a good tool for exploring this observation.  It is 
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possible that IL-6 has a minimal effect in inducing EMT but has a strong effect in 

maintaining the EMT-like state.  For example, it has been shown that IL-6 is critical for 

maintaining and expanding a cancer-stem like population of trastuzumab resistant cells 

(63).  The data here suggest that multiple pathways need to be blocked to prevent EMT 

induction but preventing the maintenance of this state might be a better target.  Time-

based experiments such as the real-time cell analysis can test this hypothesis.   

NF-κB signaling has been shown to induce EMT including down-regulation of E-

cadherin through ZEB1 in MCF-10a cells (174).  Interestingly, the number of CD3+CD8+ 

cytotoxic lymphocytes producing TNF-α was correlated with the measurement of EMT 

in the blood of breast cancer patients, but the number of CD3+CD4+ T-helper cells was 

not.  Despite the fact that CD8+ T cells are capable of direct tumor lysis, this observation 

is consistent with previous work by Santisteban et al that showed that immune-editing by 

CD8+ T cells can induce EMT in a mouse Her2/neu transgenic model (175). 

 

One of the major factors upregulated in αCM-CM is IL-17.  IL-17 has been 

associated with auto-immune reactions as might be induced by tumor-immune 

interactions.  However, one of the major targets of IL-17 is endothelial cells.  This highly 

inflammatory cytokine induces endothelial cells in-turn to produce inflammatory factors 

IL-6, granulocyte-colony stimulating factor (G-CSF), granulocyte-macrophage colony 

stimulating factor (GM-CSF), IL-1β, TGF-β1, TNF-α, IL-8 and MCP-1, many of the 

same factors discussed here (176, 177).  IL-8 in particular has been shown to supports 

breast cancer stem cells in a SUM149 model (65, 66).  As the frequency of lymphocytic 

infiltrates in IBC tumor emboli is still uncertain, this model allows for the possibility that 

immune activation could produce factors such as IL-17 that, in turn, release EMT-related 

factors TNF-α, IL-6 and TGF-β1 into tumor emboli.   
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 Further studies are needed to show that cytokines from activated immune 

cells increase metastasis in vivo.  However, the patient data presented here suggest that 

therapeutic options should not broadly target immune cells.  Rather, therapies that alter 

the immune response by favoring adaptive immune responses or shifting antigen specific 

responses towards a TH1 polarization would be more beneficial. 

  It can be argued that the phenomenon presented here is a selection of resistant 

cells rather than the induction of EMT.  Inflammatory factors (such as TNF-α) induce 

cell death in the majority of cells and select for resistant cancer stem cells that are 

characterized by EMT phenotypes (163).  In fact, our data confirm that αCD3-CM 

greatly reduces cell counts.  However, the kinetic data from the xCellignce platform 

suggest selection of resistant cell is unlikely to account for the increase in EMT 

phenotype as the cell index increases within just a few hours following addition of 

immune-CM to the culture of SUM149 cells, far faster than stem cells would be able to 

repopulate a nascent niche evacuated by recently killed differentiated cells.   

 The combination of increased invasion and increased adhesion is observed 

with the xCelligence platform and suggested by the PCR data is confusing but not 

unprecedented.  The increased cell index has also been reported in the benign prostate 

hyperplasia cell line BPH-1 in response to TGF-β1 (178) using this platform.  The 

authors argue although TGF-β1 has anti-proliferative effects, the induction of EMT 

induces cell spreading that increase cell index.  

 Twist is one of the primary transcription factors responsible for driving 

EMT, yet we did not observe a consistent change in Twist expression in this study.  

However, redundancies in signaling pathways make single nodes dispensable.  For 

example, developmental models in drosophila showed that only the complete loss of both 

snail and twist abrogated mesenchymal features (179) and therefore lack of induction of a 
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single transcription factor should not imply that the developmental program is not 

induced.  Notably, while Twist is required to maintain the EMT program, Twist 

expression is dispensable in the early stages of EMT initiation.  In fact, Tran et al. 

showed that under transient TGF-β1, Snail1 actively represses Twist1 expression, which 

later increases.  They show that in MCF-10a cells after 2 days of TGF-β1 treatment, the 

time point used in the majority of experiments in this study, twist1 expression is lower 

than in untreated cells (180).   

TGF-β can be a powerful inducer of EMT.  Cell culture experiments first showed 

that TGF-β induced EMT in mouse mammary epithelial cells.  Miettinen et al showed 

that TGF-β decreased epithelial markers E-cadherin, desmoplakin I and II and ZO-1 

while increasing fibronectin and cytosketal rearrangements.  TGF-β1, TGF-β2 and TGF-

β3 are all capable of inducing EMT (181).    

After binding TGF-β, TGF-β type II receptors phosphorylate the TGF-β type I 

receptor(182) and dominant negative forms of TGF-β type II receptor can inhibit 

mammary EMT in vivo (183).  Expression of an activated form of the TGF-β type I 

receptors ActRIB/ALK-4 or ALK-5 can also induce EMT in mouse mammary 

tissue(184) while dominant negative forms of ALK-5 can inhibit EMT (185).   

Binding of TGF-β induced signaling through both Smad2 and Smad3 by c-

terminal phosphorylation by TGFβRI.  Smad3 and Smad4 form trimmers with Smad4 

before translocating to the nucleus where they regulate transcription.  Smad signaling 

directly regulates 3 families of transcription factors related to EMT: Snail family, ZEB 

family and the basic helix-loop-helix (bHLH) family (e.g. Twist) (186).   

 

  



www.manaraa.com

 

 151 

Chapter 6: General Discussion 
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The central hypothesis of this dissertation is that Inflammatory breast cancer is 

distinguished from other non-inflammatory breast cancers by unique 

immunological characteristics that contribute to the rapid progression of the 

disease.  I have presented data on inflammatory soluble factor from blood, hematology 

profile and functional abilities of peripheral blood T and dendritic cells from 

inflammatory breast cancer patients.  The number of IBC patients in this study is 

unprecedented and could not have been accrued at any other institution.  While there are 

a few clear differences in the average expression of certain factors, notably an increase of 

TGF-β in the serum and a possible decrease in serum CRP, the presence of highly 

inflammatory Tc17 cells and the relative increase of inflammatory cells in MIBC 

compared to MBC, this work has shown that there is not a clear immune signature that 

distinguishes IBC from non-IBC.  However, the responses of IBC cells to immune-

mediated inflammation show that inflammation can alter the aggressive tendencies of 

disease by invoking an epithelial to mesenchymal transition that is associated with 

increased invasion and migration.  This induction of EMT by immune inflammatory 

factors is not unique to IBC as a similar response was seen in cell lines representing an 

array of breast cancer subtypes.  Surprisingly, unique in IBC this EMT was only partial, 

with an unconventional upregulation of E-cadherin that is a hallmark of IBC.  

This work fails to provide strong evidence in support of the central hypothesis 

that there is a unique IBC signature.  While this work comes close to proving the 

hypothesis wrong, the factors studied were expertly selected and not comprehensive; 

therefore we cannot say that there is not a unique signature.  The negative cannot be 

proven as there are almost always new factors that can be considered.  As life as we know 
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it is mostly defined by genetics, whole genome sequencing would seem to capture most 

of the possible states as the human genome is finite, at least technically (all combinations 

of base pairs without considering insertions or deletions is nearly infinite at 43x10^9 = 9.6 x 

101806179973 – that’s a nine followed by over 4 billion zeros).  Yet, even this does not 

account for interactions with the environment.   This merely serves to suggest that a 

comprehensive screen would be nearly impossible.  Never the less, the data presented 

here do not provide a clear unique signature for inflammatory breast cancer.   

The lack of an IBC-specific profile is consistent with previously described work 

that approached inflammatory breast cancer from tumor genetics.  Gene expression and 

hybridization data using microdissected tumors from the Inflammatory Breast Cancer 

Consortium others has failed to provide a consistent gene signature within the tumor 

(170).   Furthermore, deep sequencing suggests that common driver mutations, while 

present, are individually very rare, further suggesting that no single pathway has yet 

provided a clear target for research and therapy.   

In general, the median levels of soluble inflammatory mediators were lower in 

IBC than in LABC.  This was surprising finding as we had expected to see higher levels 

of inflammation in IBC.   However, it is consistent with the observed high levels of the 

anti-inflammatory agent TGF-β1. 

TGF-β1 is highly ubiquitous and pleiotropic.  In terms of cancer progression, its 

actions can both inhibit primary tumor growth and promote metastasis by inducing EMT.  

Here we show that higher levels are associated with IBC.  As all the patients in this study 

had advanced disease, it is possible that the tumor has progressed past a point where the 

inhibitor growth effects of TGF-β1 would be most apparent.  

Furthermore, we observed lower levels of IL-8 in IBC than in non-IBC.  Again, 

considering that IBC cell lines produce high levels of IL-8, this was not expected.  Of 
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course, IL-8 is produced by many cell types and local production of soluble factors can 

be greatly diluted in circulation.   

 These observations of soluble factors suggest that modulation of 

inflammation may be related to disease progression in IBC.  The idea that immune cells 

promote tumor growth is not new.  Virchow first proposed the connection between 

inflammation and cancer in 1836 (review (187)).  Dvorak’s 1986 statement that cancer is 

“a wound that does not heal” (188) is almost accepted as gospel.  Cancer, he argues, 

induces changes in the stroma similar to wound repair with changes in the extracellular 

matrix and increased production and secretion of growth factors.   

Studying the tumor microenvironment is tricky in inflammatory breast cancer.  In 

primary tumor samples, the amount of untreated tissue obtained from core biopsies is 

minuscule at best and even with ultrasound guidance often return minimal tumor.  Since 

the majority of patients are treated with neoadjunantneoadjuvant therapy, the larger 

samples obtained at surgery have been heavily treated.  There is currently no mouse 

model for inflammatory breast cancer as the molecular driver is still undefined.  In vivo 

studies are limited to xenografts of human derived cell lines.  Therefore, we are limited to 

describing the samples that are available and contriving co-culture experiments as we 

have done in Chapter 5.  In Chapters 2-5 we have described immune 

paramatersparameters from blood of IBC patients.  Blood represents an ideal source of 

minimally invasive tissue that can be samples longitudinally to observe changes over 

time.  While the work described here is limited to baseline samples, it lays a foundation 

for future studies that will observe changes.   

We observed normal levels of T cells in IBC patients but reduced levels in 

metastatic breast cancer, both with and without inflammatory features.  A CD4 T-cell 

count of 200 or less cells/µL is severely immune deficient (this meets the definition of 
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acquired immune deficiency symdromesyndrome – AIDS) and often requires 

prophylactic treatment to prevent pneumocystis pneumonia and mycobacterium avium 

complex.  We observed 6 patients with CD4 T-cell counts below 200 (3 MIBC and 3 

MBC, all previously treated with systemic therapy) and an additional 31 patients below 

the “normal” limit of 500 (20 MIBC, 6 MBC, 3 IBC and 1 LABC) only 8 of whom where 

treatment naïve.  This suggests that while treated patients maybe immune compromised, 

pre-treatementtreatment patients have a large number T cells that might be capable of 

inducing an immune response.   

Therefore, we tested the ability of T cells to respond to antigen in Chapterchapter 

4.  As shown in Figure 4.1D on page 98, both IBC and MIBC patients have CD4+ T cells 

in numbers comparable to HD that are able to synthesize cytokines.  This suggests a 

highly intriguing possibility for an immune therapy approach.  It is noteworthy that the 

percentage of cells responding with cytotoxic, TH1 related cytokines are suppressed in 

MIBC (but not IBC).  This suggests that an immune-based approach might be more 

feasible in stage-III rather than stage IV disease.  In liquid tumors, it has been observed 

that vaccination strategies are most successful against minimal residual disease.  If 

similar principles are involved in breast cancer, it might be best to harvest T cells from 

patients prior to therapy, expand them in vitro and return activated cells to the patient 

following systemic therapy and surgical de-bulking.  As we also observed slight defects 

in dendritic cell number and ability in IBC patients (Figure 4.2 on page 105), the in vitro 

stimulation may be a good option of eliciting an anti-tumor immune response.   

In dendritic cell responses, IBC had an increase in pDC synthesized TNF-α and 

mDC synthesized IL-10.  pDC activity tends to promote innate immunity through 

recruitment and activation of macrophages with interferons.  In contrast, mDC are more 

related to adaptive immunity, however the observed increases in IL-10 synthesis would 
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suggest that a cytotoxic immune response would be inhibited.  Furthermore, LABC had 

significantly higher expression levels of costimulatory and activating cell surface proteins 

CD80, CD86 and CD40 than IBC.  Together theses suggest that IBC has a defect in the 

ability of DC to polarize T-cells towards an anti-tumor TH1 response.   

Immune Induction of EMT 

We have shown that TNF-α, TGF-β and IL-6 can contribute to the aggressiveness 

of IBC by enhancing EMT.  TGF-β can be hard to target clinically because of its ubiquity 

and pleiotropic effects (ie., this stuff is everywhere and does everything).  We are 

proposing here that immune derived TGF-β contributes significantly to the induction of 

EMT within the tumor microenvironment.  The Morgan Welch Inflammatory Breast 

Cancer Research Program and Clinic at MD Anderson has recently proposed to test BP-

100.1.01 (liposomal antisense Grb-2) in IBC patients since Grb-2 is involved in the 

signaling cascade initiated by EGFR signaling.  However, Grb-2 is also involved in T cell 

receptor (TCR) signaling (189).  As such, administration of this drug should decrease T 

cell responsiveness.  Hui Gao showed such an effect following treatment of CML patients 

with imatinib mesylate while designed to inhibit BCR-ABL tyrosine kinase signaling, 

also inhibits Lck signaling at the top of the T-cell receptor signaling cascade (167).  

Similarly, if the anti-Grb2 drug does reduce antigen specific immune responses, activated 

TReg cells might produce less TGF-β.  It would be easy to test polyclonal T-cell responses 

to this drug using the methods presented in this thesis.  Additionally, new TGF-β 

antibodies such as clone 9016 from R&D (190) not available at the initiation of this study 

may allow for the direct quantification of TGF-β production by T-cells.  Simultaneously, 

EMT can be measured in circulating tumor cells (154).  Following from the data 

presented here, we would expect that after initiation of tBP-100.1.001, there would be a 

blunted T-cell cytokine response including decreased TGF-β synthesis that would 
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correlate with decreased EMT.  Inhibiting the TReg response would also have the benefit 

of increasing NK activity within the tumor microenvironment.   

Inhibiting TGF-β production by T-cells is a dangerous proposition however.  

While this might decrease TReg activity, it will also decrease the TH1 response.  We have 

shown in Chapter 4 that a strong T-cell cytokine response is related to increased survival.   

The EMT data shown in Figure 5.10 on page 140 suggests that IL-6 might be a 

good target for preventing the maintenance of EMT.  The spiking data shows that adding 

IL-6 alone to unconditioned media had little effect on the induction of EMT at 48 hours.  

However, depleting IL-6 from the conditioned media greatly reduced the EMT induction.  

This suggests that an anti-IL-6 therapy would not be able to reduce induction of EMT, 

but it might prevent EMT cells from persisting for extended periods of times.  Further 

study would be required to determine the appropriate time frame.  If on the one hand, 

EMT-induced cells are able to extravasate from the primary tumor, but blocking IL-6 

reduced the EMT phenotype before they circulating tumor cells reach the metastatic site, 

an anti-IL-6 therapy might prevent metastasis by preventpreventing the tumor cellcells 

from invading new tissue.  However, if the time period is longer, blocking IL-6 might be 

help the tumor cells undergo MET (mesenchymal to epithelial transition) or reverse EMT 

at a new metastatic site, allowing the cells to take up residence.  In this case, the anti-IL-6 

therapy would induce metastasis.  Further experiments with the real-time cell analysis 

might help tease this apart, but only an in vivo model can really test this effect.  

Several anti-IL-6 drugs are currently in clinical trials.  It is possible to target 

either the soluble IL-6 ligand (such as siltuximab), the soluble IL-6 receptor required for 

IL-6 signaling in most non-hematopoietic cells (such as anti-IL-6 receptor antibody 

tocilizumab) (191), the GP130 subunit of the IL-6 receptor (192), or Jak2-Stat3 signaling 
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(193).  Interestingly, metformin targets Stat3 in TNBC tumors, possibly offering 

generally well -established therapy. 

Alternatively, inflammation in general can be targeted such as through the widely 

discredited Cox-2 enzyme, the prostaglandin (EP) receptors, or C-reactive protein.  As 

the data we presented here suggest that a strong T-cell response is beneficial to patients, a 

therapeutic approach that can alter the TH1/TH2 balance in favor of TH1 would seem 

preferable to an approach that targets T cells non-discriminately.  For example, dendritic 

cells exposed to prostaglandins take on a type-2 polarized effector DC polarization and 

induce TH2 polarization in T-cells by producing less IL-12 (194).  This would suggest 

that a Cox-2 inhibitor, might be beneficial, if toxicities can be overcome.  Long chain 

fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) found 

in nutraceuticals such as fish oil alter the cyclooxygenase metabolism by favoring the 

production of PGE3 over PGE2 have proven anti-inflammatory and anti-proliferative 

properties (195); however, they do not seem to alter the TH1/TH2 balance (196).  This 

would suggest that while treatment with EPA (fish oil) might be beneficial in controlling 

tumor growth both directly and by reducing inflammatory factors, it might not be the 

strongest candidate for an optimal immune response.  Alternatively, inflammation in 

general can be targeted such as through the widely discredited Cox-2 enzyme, the 

prostaglandin (EP) receptors, or C-reactive protein.  As the data we presented here 

suggest that a strong T-cell response is beneficial to patients, a therapeutic approach that 

can alter the TH1/TH2 balance in favor of TH1 would seem preferable to an approach 

that targets T cells non-discriminately.  For example, dendritic cells exposed to 

prostaglandins take on a type-2 polarized effector DC polarization and induce TH2 

polarization in T-cells by producing less IL-12 (194).  This would suggest that a Cox-2 

inhibitor, might be beneficial, if toxicities can be overcome.  Long chain fatty acids such 
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as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) found in nutraceuticals 

such as fish oil alter the cyclooxygenase metabolism by favoring the production of PGE3 

over PGE2 have proven anti-inflammatory and anti-proliferative properties (195); 

however, they do not seem to alter the TH1/TH2 balance (196).  This would suggest that 

while treatment with EPA (fish oil) might be beneficial in controlling tumor growth both 

directly and by reducing inflammatory factors, it might not be the strongest candidate for 

an optimal immune response.   

Alternatively, statins (or HMG-CoA reductase inhibitors), used to control blood 

cholesterol levels have a strong anti-inflammatory effect as well (197).  As these drugs 

are generally well tolerated and likely quite beneficial as IBC patients tend to be obese, 

statins offer a highly intriguing possible therapy.   

In total, the data here suggest multiple possible therapeutic targets, however, we 

lack a well-validated system for testing.  

Proposed Animal Model 

Clearly one of the major limitations of this work is the lack of in vivo data.  We 

have presented ex vivo data to show that immune cells in IBC are competent.  We have 

performed co-culture experiments of normal donor leukocytes with IBC cell lines.  But 

we do not know how these cells interact in the microenvironment.  Presently, all IBC in 

vivo models are xenografts of human-derived cell lines in immune compromised mice.  

Developing a true in vivo model would require an understanding of the molecular basis 

for IBC that currently does not exist.   

One alternative that might yield some answers would be to induce tolerance to the 

human cell in the mouse model.  Some researchers have been able to transplant human 

cell lines into mice with fully intact immune systems by overexpressing CCL21 in the 

tumor cell.  CCl21 recruits T cells to the tumor, but the majority of the cells recruited are 
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TReg that lead to immune tolerance.  In a melanoma model, tumors with low CCL21 

showed antigen specific immunity and whereas tumors expressing high levels of CCL21 

induced tumor tolerance with high levels of TGF-β and even protect distant, non-CCL21 

expressing tumor co-implanted at the same time, even in the non-syngeneic cell lines 

(198).  Such a model might allow transplanting human IBC cell lines into immune 

competent mice.  However, would this truly model IBC?  Probably not!  For one, it 

seems like the microenvironment plays a critical role, if the host is left genetically 

unperturbed, we might miss a critical part of the disease.  The data we presented here 

suggest that a normal immune response is capable of inducing aggressive features in 

breast cells, including the non-tumorigenic cell line MCF-10a.  So the question is: what 

dysregulation in immune activation can lead to this?   

As an alternative to a genetically engineered model, combinations of in vitro 

stimulation and xenograft implantation may also get closer to providing an in vitro model 

for the interactions of immune cells and IBC tumors.  For example, we have shown here 

that phenotypic changes are induced in IBC cells when exposed to soluble factors from 

immune cells.  These EMT-induced cells can be transplanted into immune compromised 

mice once exposed to conditioning factors in vitro (see Illustration 6.1).  As IBC cell 

lines are tumorigenic and metastatic, the end point would have to be the rate and number 

of metastases formed.  These results would require a sufficiently powered experiment, as 

the results are unlikely to yield a clear, unambiguous answer.  To help establish the 

timing of metastasis (particularly since the effects of the immune induced EMT are likely 

transitory), the primary tumor can be removed once it is established.   
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Illustration 6.1 

Proposed in vivo model.  Since no mouse model of IBC exists, tumor-immune 
interactions would have to be modeled in vitro and then transferred to a xenograft setting.  
To test weather immune-induced EMT contributes to metastasis, we propose exposing 
IBC cell lines to immune conditioned media in vitro prior to transplantation into the 
cleared mammary fat pads of immune compromised mice.  The number and rate of 
metastases would be used as an endpoint. 
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Perhaps even more fundamental than a lack of an in vivo model, we currently 

have a very poor understanding of what leukocytes are involved within IBC tumors.  This 

limitation is due, in part, to the very scarce pre-treatment samples available.  Currently, a 

core biopsy is routinely taken prior to surgery.  We have recently initiated a protocol in 

collaboration with Dr. Radvanyi to retrieve tumor-infiltrating lymphocytes from these 

samples to better characterize immune states as they are within the tumor.   We hope this 

will validate the findings we saw in blood and in our in vitro studies.   

In summary, inflammatory breast cancer is a complex and highly aggressive 

disease that has not yet been defined on the molecular level by examining the tumor 

alone.  We proposed that tumor host interactions, specifically between immune cells and 

tumor cells could help explain some of the unique etiology of IBC.  We failed to define a 

clear IBC signature within soluble factors from the blood or from circulating 

hematopoietic cells. However we noted differences between IBC and non-IBC that 

suggest immune regulation might play a role in the disease.  We showed that like most 

breast cancers, IBC could be induced to a more aggressive state by soluble immune 

factors including IL-6, TNF-α and TGF-β as demonstrated by the induction of EMT-

related factors and migration in SUM149 cells.  Strikingly, we found that one of the most 

perplexing hallmarks of IBC, the persistence of E-cadherin expression in a highly 

metastatic disease, can be mediated by these immune factors.  Blocking these interactions 

specifically with targeted therapy or by targeting inflammation in general might offer a 

beneficial therapeutic approach.  
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Chapter 7: Methods
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PATIENT RECRUITMENT 

All patient studies were completed at The University of Texas MD Anderson 

Cancer Center.  For cellular immune studies, patients were recruited to lab protocol 

Lab08-0199 “ Reactivation of Epstein - Barr virus in Patients with Breast Cancer.”  The 

serum profiling studies also included patients recruited under the Inflammatory Breast 

Cancer Registry, 2006-1072.  All patients provided written informed consent in 

compliance with the World Medical Association Declaration of Helsinki.  Eligibilty 

criteria for Lab08-0199 included women with advanced breast cancer starting a new line 

of therapy.  Initial target enrollment called for enrollment of 30 patients from each of the 

following 4 diagnoses: locally advanced breast cancer (LABC), inflammatory breast 

cancer (IBC), metastatic breast cancer (MBC) with IBC, and metastatic breast cancer 

with inflammatory features (MIBC).  Enrollment of patients with IBC was later extended 

to 200 patients.  The registry protocol contains two cohorts of patients diagnosed with 

IBC.  Cohort I is restricted to newly diagnosed patients.  By design, patients should be 

untreated at the time of sample collection, however discrepancies in the timing of 

enrollment, treatment initiation and sample collection account for several samples 

collected after treatment.  Cohort II includes patients with a diagnosis of IBC that have 

already initiated treatment.  These are usually patients that were diagnosed in the 

community and referred to MD Anderson.   

Clinical correlates were collected by chart review from the MD Anderson 

electronic medical record system ClinicStation.  Pathology results and lab tests were 

entered into the database by the author or other lab members, but tumor staging and 

survival times were all evaluated and entered into the database by clinicians with a 

medical doctorate.   
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Clinical staging was based on AJCC criteria (9).  The tumor markers estrogen 

receptor (ER) and progesterone receptor (PR) were evaluated by immunohistochemistry 

(IHC) of fine needle aspirates or surgical excisions of the primary tumor, as reported by a 

board certified pathologist.  Tumors were scored as positive if 5% of the cells were 

positive for the marker.  Her2 was evaluated by immunohistochemistry and fluorescent 

in-situ hybridization (FISH) when available.  Tumors were considered Her2 positive if 

they were scored 3+ on IHC or had a Her2/CEP 17 ratio >2 by FISH.  Amplification by 

FISH was considered the gold standard such that if there were discrepant scores by FISH 

and IHC, the FISH categorization was used for classification (ie., an IHC 3+, FISH- 

tumor was classified as Her2 negative).  The proliferation marker Ki67, which is a good 

surrogate marker for discriminating between Luminal A and Luminal B intrinsic subtypes 

is rarely requested at MD Anderson and was not included in the analysis.   
 

SAMPLE COLLECTION 

All samples were collected at University of Texas MD Anderson Cancer Center 

and processed in the lab of James M. Reuben, PhD.  Peripheral blood samples were 

collected by venipuncture into evacuated tubes.  Samples collected under Lab08-0199 

included a single 10 mL red-top tube containing no anti-coagulants for serum analyses 

and six 10 mL green-top tubes with heparin anti-coagulant for cellular analyses.  Samples 

collected under 2006-1072 included one 10 mL red-top serum tube and two 10 mL purple 

top tubes with EDTA anti-coagulant.  Lab08-0199 samples were processed within 24-

hours of drawing.   
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FREEZE SERUM AND PLASMA 

Plasma was collected from green heparinzed tubes and serum from red-top tubes 

without anti-coagulant.   Tubes were centrifuged for 20 minutes at 1200 g.  Serum was 

harvested from above the clot without disturbing the pellet and plasma was harvested 

above the buffy coat leaving at least a few millimeters of plasma to prevent collecting 

cells.  Samples were aliquoted into three 1-mL tubes with silicon O-rings to minimize 

loss to evaporation.  Aliquots were frozen temporarily at -20˚C until the storage box is 

filled and transferred to -80˚C for long-term storage.    

FREEZE PBMC 

Anti-coagulated blood (heparin for most studies) was diluted with at least an 

equal volume of phosphate buffered saline (PBS) up to a total volume of 30-35 mL.  The 

diluted blood was slowly layered over room temperature Ficoll-Paque Plus (GE 

Healthcare Life Sciences, Pittsburg, PA).  This solution consists of a mixture of the 

hydrophilic polysaccharide Ficoll PM400 and sodium diatrizoate.  This produces a 

solution with a density of 1.078 g/mL, intermediate to the density of a red blood cell 

(1.096 g/mL) or polymorphonuclear leukocyte (1.06 – 1.10) and the density of a 

mononuclear leukocyte.  After a 30-minute centrifugation at 400g with the break off, 

peripheral blood mononuclear cells (PBMC) were harvested from the interface between 

the Ficoll and the diluted plasma.  The centrifuge break must remain off to prevent 

vibrations from disturbing the phase interfaces.  PBMC consist of lymphocytes and 

monocytes although typically had a small erythrocytic and granulocytic contamination 

was present, particularly in patient samples.  PBMC were washed two times by adding 

PBS to the cells and followed by a 10-minute centrifugation at 300g at room temperature 

to pellet the cells.  To freeze the cells, the cell pellet was resuspended in 1-mL of freezing 

buffer consisting of 10% dimethyl solfoxide (DMSO) and 90% heat inactivated, certified 
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low endotoxin fetal bovine serum  (FBS, Life Technologies, Carlsbad, CA).  As 

endotoxin activates PBMC through the TLR-4, it is critical that only high-quality FBS is 

used.  Cell aliquots were positioned in a “Mr. Frosty” cryogenic freezing container and 

placed into a -80˚C freezer overnight.  The isopropanol in the freezer container maintains 

a 1˚C/min freezing rate which prevents cell rupture.  After equilibrating to the -80˚C 

temperature, cell aliquots were transferred to a liquid nitrogen freezer for long-term 

preservation.   

THAWING CELLS 

  To thaw cryopreserved cells, an aliquot was removed from the liquid nitrogen 

tank and rapidly thawed by placing the frozen tube in a 37˚C water bath with gentle 

agitation for approximately 1 minute.  Once the cells had thawed, the mixture was 

transferred to a polypropylene conical tube.  Complete media consisting of RPMI 

supplemented with10% FBS and antibiotic was added drop-wise to restore physiologic 

osmolality.  The cells were washed twice with complete media by centrifugation at 400g 

for 10 minutes, counted by trypan blue exclusion assay using a hemocytometer with an 

improved Neubauer grid and resuspended in complete media at 1 x 106 cells per mL.  

CELL CULTURE 

All cells were cultured in tissue-culture treated plastic vessels and incubated in a 

5% CO2 atmosphere at 37˚C.  PBMC were incubated in RPMI 1640 (Corning, Manassas, 

VA) supplemented with 10% low endotoxin certified FBS and antibiotic 

(penicillin/streptomycin) or antibiotic/antimycotic (penicillin/streptomycin/amphotericin 

B; Life Technologies, Carlsbad, CA).   

IBC cell lines used in this study include: SUM149PT, SUM190PT, KPL-4, and 

IBC-3. SUM149PT cells, SUM190PT and the non-IBC cell line SUM159PT (abbreviated 
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to SUM149, SUM190, and SUM159PT respectively throughout this dissertation) were 

obtained courtesy of Dr. Stephen Ethier (Kramanos Institute, MI, USA) and are 

commercially available (Asterand, Detroit, MI).  Cells were cultured in Ham's F-12 

media supplemented with 10% FBS, 1 µg/mL hydrocortisone, 5 µg/mL insulin and 

antibiotic-antimycotic (referred to as “IBC media”). 

IBC-3 cells were provided courtesy of Dr. Wendy A. Woodward (36) (MD 

Anderson Cancer Center, Houston, TX) and cultured in Ham's F12 with 10% FBS and 5 

µg/mL Insulin/L with 100 µg/L Hydrocortisone and antibiotic-antimycotic.  KPL4 was 

kindly provided by Dr. Junichi Kurebayashi (Kawasaki Medical School, Japan) and was 

maintained in DMEM/F12 medium supplemented with 10% FBS and antibiotic-

antimycotic.  

MDA-MB 231 breast cancer cells were obtained from the American Type Culture 

Collection (Manassas, VA) and grown in DMEM/F12 50/50 culture media supplemented 

with 10% Gibco® certified FBS (Life Technilogies™, Grand Island, NY).  

The normal mammary epithelial cell line MCF-10a was cultured in DMEM/F12 

supplemented with 5% horse serum (not FBS), 20 ng/mL EGF, 100 ng/mL cholera toxin 

0.01 mg/mL insulin, and 500 ng/mL hydrocortisone.  Cholera toxin increases intracellular 

levels of cAMP and increases growth in epithelial cells and helps the growth of normal 

human mammary epithelial cells but has heterogeneous effects on tumor cell growth 

which typically have elevated cAMP (199).  

Cell line culture conditions are summarized in Table 7.1 Cell Lines. 
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Table 7.1 Cell Lines 

Breast cancer cell line culture conditions are listed.  SUM149, SUM190, KPL4 and IBC-3 are the IBC model cell lines.  
SUM149 is TNBC while the other IBC cell lines are Her2+.  Additionally, SKBR3 was used as a Her2+ cell line.  MDA-MB-
231 was used as the prototypical mesenchymal breast cancer cell line.  SUM159 was used as a claudin-low cell line.  MCF-7 
and T47D were used as luminal, HR+ cell lines.  MDA-453 was used as a TNBC, androgen receptor positive cell line. MCF-
10a was used as a normal, non-tumorigenic cell line.   
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Cell Line Source Culture Media Type Type ER PR Her2 EGFR 

IBC-3 Wendy Woodward (MD Anderson) Ham's F12 5% FBS HI IBC Luminal B N N P N 

SUM149PT Stephen Ethier (Asterand, Detroit, MI) Ham's F12 5% FBS HI IBC, TNBC Basal-like N N N P 

SUM159PT Stephen Ethier (Asterand, Detroit, MI) Ham's F12 5% FBS HI TNBC Claudin-low N N P P 

SUM190PT Stephen Ethier (Asterand, Detroit, MI) Ham's F12 5% FBS HI IBC Luminal B N N P P 

KPL-4 Dr. Junichi Kurebayashi  
(Kawasaki Medical School, Japan) DMEM/F12 10% FBS IBC Luminal B N N P P 

MCF-10a ATCC 
DMEM/F12 , Cholera Toxin non-tumorigenic Basal-like 

N N N P 
5% Horse Serum, EHI   

MCF-7 ATCC DMEM/F12 10% FBS epithelial Luminal A P P N N 

MDA-MB-231 ATCC DMEM/F12 10% FBS mesenchymal Claudin-low N N P N 

MDA-MB-453 ATCC DMEM/F12 10% FBS androgen+ Unclass. N N P N 

SK-BR-3 ATCC DMEM/F12 10% FBS Her2+ Her2 N N P P 

T47D ATCC RPMI 10% FBS epithelial Luminal A P P P P 

 
HI – Hydrocortisone 100µg/mL, Insulin 5µg/mL 
EHI – EGF 20ng/mL, Hydrocortisone 100µg/mL, Insulin 5µg/mL 
FBS – Fetal Bovine Serum 
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CM PREPARATION 

Immune conditioned media as described in Chapter 5 was prepared from healthy 

donor PBMC.  Fresh peripheral blood was collected from healthy volunteers by 

venipuncture into heparinized Vacutainer collection tubes (BD, Frankiln Lakes, NJ).  The 

mononuclear cell fraction (PBMC) was collected by density gradient centrifugation over 

Ficoll-Paque media (GE Healthcare Bio-Sciences Corp., Piscataway, NJ).  PBMC were 

cultured at an initial density of 1 x 106 cell per mL in RPMI 1640 supplemented with 

10% Gibco® certified fetal bovine serum (FBS, Life Technilogies™, Grand Island, NY) 

plus antibiotic-antimycotic.  To activate the PBMC, cells were stimulated with plate-

bound anti-CD3 (coated at 8 µg/mL) plus soluble anti-CD28 antibodies (200), 10 µg/mL 

lipopolysaccharide (LPS), or left unstimulated.  Following 48 hours of culture, 

conditioned media were collected and centrifuged at 400 g to pellet cells and debris.  The 

supernatant was clarified with a 0.22 µm pore filter and frozen in multiple aliquots at -

80˚C.  Prior to culturing with breast cancer cell lines, the conditioned media was diluted 

1:4 with IBC media (note – migration assays used serum-free IBC media).  For cell lines 

other than SUM149, the appropriate media was used as noted in the “Cell Culture” 

section above.  TGF-β1 (R&D Systems, Minneapolis, MN) was used at 2 ng/mL in the 

appropriate media as a positive control for EMT induction.  

 

FLOW CYTOMETRY BASICS 

Multi-Color Flow Cytometry 

Most flow cytometry acquisitions were performed on a BD LSR II (Becton, 

Dickinson and Company, San Jose, CA) equipped with two lasers and 6-color, 8-
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parameter capability.  The red laser is a 635-nm 20 mW HeNe laser supporting 2 

fluorescent channels in a trigon filter set.  The blue laser is a 488 nm 20 mW Coherent 

Saphire air-cooled argon laser providing the side-scatter channel (SSC) and 4 fluorescent 

channels plus the side scatter channel arranged in an octagon format.  Data was acquired 

in BD FACS Diva version 6.1.1.  Data was analyzed in FlowJo data analysis software for 

flow cytometry (TreeStar, Inc, Ashland, OR) on a PowerMac computer running Mac OS 

X.  Both the software and the computer were upgraded over the course of the studies.  

FlowJo versions included release 8.7.1 through 9.6.1.  All data was reanalyzed and 

confirmed after the transition from version 8 to 9. 

4-Color ICC 

In addition some 4-color experiments, most notably the intracellular cytokine 

syntheses from the TCR-stimulated PBMC in the Lab08-0199 protocol, were acquired 

using a BD FACS Calibur flow cytometer equipped with a 488 nm air-cooled blue argon 

laser supporting 3 fluorescent channels plus forward channel light scatter (FSC) and SSC 

and a 635 nm red diode laser for a the single APC channel.  The Calibur flow cytometer 

is driven by a PowerMac G4 running OS 9.1.0 and CellQuest 3.3.  This 4-color data was 

analyzed in Cell Quest Pro version 6 on a PowerMac running Mac OS X.  The host 

analysis computer was upgraded over the course of the studies.  The current machine is 

configured with a 2.8 GHz quad-core Intel xenon processor with 16 GB of RAM, a 1 TB 

system hard drive, a 1.5 TB drive for data, and a 2 TB back-up drive that runs hourly 

back-ups via Apple Time Machine.   
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FRESH PHENOTYPES 

Fresh whole blood from collected in hepainized collection tubes was processed 

within 24 hours of collection.  Aliquots of 200µL were reacted with fluorophore-

conjugated monoclonal antibodies in panels including up to 6 colors (BD Bioscience, San 

Jose, CA).  Reactions were incubated in the dark at room temperature for 30 minutes.  

Subsequently, the red blood cells were lysed with BD FACS/Lyse for 10 minutes at room 

temperature and the washed twice by centrifugation using a Helmer UltraCW cell washer 

(Helmer Scientific, Noblesville, IN) in PBS.  Samples were resuspended in PBS prior to 

acquisition.  Cytometric data was acquired using the BD LSR II.  Invitrogen CountBright 

beads were added to the dendritic cell tube to enumerate absolute counts of dendritic 

cells.   

DC FUNCTIONAL TESTS 

Fresh whole blood from collected in heparinized collection tubes was processed 

within 4 hours of collection, as pDC in particular can be difficult to find in older samples. 

Aliquots 4 aliquots of 1mL were reacted placed in polypropylene 15 mL conical tubes.  

Two tubes were used for overnight stimulations for upregualtion of co-stimulatory 

molecules and activation markers with either TLR7 and TLR8 agonists TLR075 and 

TLR097 (Invivogen, San Diego, CA) or left unstimulated.  CL075 activates TLR8 and 

TLR7 to a lesser extent.  CL097 is a water-soluble derivative of the imidazoquinoline 

compound R848 and stimulates TLR 7 and 8.  The other two tubes were similarly reacted 

with the TLR agonists or left unstimulated for 4 hours for quantification of cytokine 

synthesis, however, if the samples were received after noon, the samples were left at 

room temperature and stimulated the following morning.  Brefeldin A was added the final 

3 hours to block Golgi transport and maintain de novo synthesized cytokines in the cell.  

Following stimulation, samples were fixed and red blood cells were lysed with 10 mL of 
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BD FACS/Lyse and washed 2 times with PBS.  Aliquots of 200 µL were reacted with 

fluorophore-conjugated monoclonal antibodies in panels including up to 6 colors (BD 

Bioscience, San Jose, CA). Reactions were incubated in the dark at room temperature for 

30 minutes.  Subsequently, samples were washed twice by centrifugation in PBS.  

Samples were resuspended in PBS prior to acquisition.  Cytometric data was acquired 

using the BD LSR II.      

 

SERUM CYTOKINE ANALYSIS (LUMINEX) 

Serum samples were collected as described above from MD Anderson protocols 

Lab08-0199 and 2006-1072.  Samples were analyzed in batch using Milliplex bead kits 

(EMD Millipore Corporation, Billerica, MA) according to the manufacture protocol with 

overnight incubations and an additional point added at the low end of the standard curve 

and acquired using a Luminex LX100 (Luminex Corporation, Austin, TX) running 

BioPlex control and analysis software Version 5.0, (BioRad, Hercules, CA). 

T-CELL STIMULATION THROUGH T-CELL RECEPTOR (ANTI-CD3 STIMULATION) 

To interrogate T-cell function, T-cells were activated polyclonally through the T-

cell receptor.  Anti-CD3 antibody immobilized to plastic can cross-link T-cell receptors 

on T-cells establishing a localized cluster of receptors (supramolecular activation cluster 

or SMAC) reminiscent of an immunological synapse.  This facilitates phosphorylation of 

immunoreceptor tyrosine-based activation motifs.  Soluble anti-CD28 antibody is added 

as a “signal 2” to mimic co-receptor binding.  In these experiments, anti-CD3 antibody 

(Beckman Coulter, clone UCHT1) was added to tissue-culture 6-well plates at 8 µg/mL 

in 625 µL per well.  The tyrosine residues on the antibody react with the benzene rings in 

the polystyrene to facilitate binding at alkaline pH, but binding is sufficient in PBS at 
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physiological pH with a 6-hour incubation at 37˚C and in a 5% CO2 humidified 

atmosphere.  Prior to freezing, the pre-coated plates were air-dried in a laminar flow hood 

overnight.  To stimulate T-cells, 50 µL of 150 µg/mL anti-CD28 antibody (BD340975, 

clone L293) was added to a thawed plate pre-coated with anti-CD3 antibody.  Five (5) 

mL of PBMC were added to each well at 1-2x106 per mL in complete RPMI for a total of 

5-10 x 106 PBMC per well.   

For intracellular cytokine synthesis assays, cells were stimulated overnight at 

37˚C in a 5% CO2 humidified atmosphere.  Next, cells were removed by gentle scrapping 

utilizing a 1-mL pipette tip.  Cells were fixed for 10 minutes with BD FACS Lyse/Fix (a 

solution that contains <1.5% formaldehyde and <5.0% diethyene gycol at working 

concentrations).  

For experiments utilizing conditioned media, cells were stimulated for 2 days at 

1x106 cells/mL.  After culture, media was aspirated and filtered with a 0.22 micron 

syringe filter to excluded cellular factors and contaminants.   

 

MRNA 

Trizol / Chloroform Extraction 

Following treatments, samples were frozen in 700 µL Qialzol lysis reagent 

(Qiagen Germantown, MD) at -80˚C and processed in bulk.  Total RNA was extracted 

with chloroform and processed using the Qiagen miRNeasy Mini Kit on a Qiacube 

automation unit according to manufacture protocol (Qiagen, Valencia, CA) to standardize 

the RNA isolation procedure.  All RNA preparation and handling steps took place in a 

laminar flow hood, under RNase-free conditions.  RNA concentration was determined 

using a NanoDrop 2000 spectrophotometer (ThermoScientific, Wilmington, DE).   
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Typically 10 µg of RNA was recovered (range 0.1µg – 62µg).  cDNA was synthesized by 

reverse transcription of 1µg of RNA and random primers using the high-capacity cDNA 

reverse transcription kit (Life Technologies, Foster City, CA).  

 

 

2-Step RT-PCR 

GENE EXPRESSION ANALYSIS BY QUANTITATIVE POLYMERASE CHAIN REACTION 

Gene expression was quantified with real-time reverse transcription-polymerase 

chain reaction (RT-PCR) using TaqMan® hydrolysis probe gene expression assays (Life 

Technologies) using a 7900HT Fast Real-Time PCR System (Life Technologies), 

following the manufacturer's instructions.  Universal thermo cycling conditions were 

used.  Assay setup was performed on a Qiagility liquid handler (Qiagen) to standardize 

pipetting.  The amplification of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

was used to normalize gene expression levels, and the relative expression of each gene 

was calculated using the equation 2-∆Ct, where ∆Ct = mean Ctgene – CtGAPDH, or 2-∆∆Ct, 

where ∆∆Ct = (Ctgene – CtGAPDH) conditioned media – (Ctgene – CtGAPDH) control media.  

TaqMan® assays were purchased from ABI: GAPDH: Hs02758991_g1, CDH1 (E-

cadherin): Hs01023894_m1, CDH2 (N-cadherin): HS00983056_m1, EPCAM: 

Hs00158980_m1, FN1 (fibronectin): Hs00365052_m1, KRT19: Hs00761767_s1, SNAI1 

(SNAIL1): Hs00195591_m1, SNAI2 (Slug): HS00161904_m1, TGM2 (TG2): 

Hs00190278_m1, TWIST1: Hs00361186_m1, VIM (Vimentin): Hs00185584_m1, and 

ZEB1: Hs00232783_m1.  Data were analyzed with the use of the 7900 Fast System SDS 

software, Version 2.4 Standalone.  All experiments were performed in triplicate. 
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Fluidigm RT-PCR 

To analyze the EMT profile of multiple cell-lines, a high throughput PCR 

technology was employed.  Multiplex qRT-PCR was performed using Fluidgm® 

integrated fluidic circuits.  This system consists of microfluidic chips that mix each 

sample with each assay in a 1:1 relationship and an qRT-PCR thermocycler and data 

acquisition platform know as the BioMark HD.  The chips utilized for these experiments 

were 48.48 Dynamic ArrayTM chips containing 48 assay wells and 48 sample wells.  The 

microfluidics distribute each 5µL sample mixture containing cDNA and mastermix 

between 48 TaqMan® hydrolysis probe assays.  This produces an array of 2,304 wells 

with a 35 nl reaction volume.  This automated system increases consistency and saves 

both hands-on pipetting time, sample volume, and reagent volume.  However, to ensure 

equal distribution into each of the very small 35nl wells, a pre-amplification step must be 

performed prior to arraying the samples.  Without the pre-amplification, rare cDNA will 

be subjected to a binomial distribution amongst the wells, where some wells will start 

with a single copy of the cDNA and others will have 0 or 2 (note – typically the single 

cDNA will reach threshold at about cycle 30, thus any data with a CT value around 30 or 

higher is of little analytic value with a small number of replicate wells).   

Prior to quantitative real-time PCR (qRT-PCR) analysis, 2.5 µL of cDNA was 

subjected to 14 cycles of multiplex sequence specific amplification using TaqMan® 

PreAmp Master Mix and TaqMan® Gene Expression Assays.  The product was diluted 

1:5 in TE.  The cycling program was 95˚C for 10 minutes followed by 14 cycles of 95˚C 

for 15 seconds and 60˚C for 4 minutes.  qRT-PCR was performed using the Fluidigm® 

48.48 dynamic array integrated fluidic circuit and BioMark HD® analysis system using 

the GE 48x48 Standard v1 thermal protocol.  Samples were run in duplicate.  TaqMan® 

hydrolysis probe assays used for pre-amp and qRT-PCR.  Data were analyzed with the 
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BioMark Real-Time PCR Analysis Software Version 2.0 (Fluidigm).  Expression 

changes were calculated using the ∆Ct method using beta-2-microglobin as the 

endogenous control.  For each cell line, the media control was used as the normalizer.   

CELL BOCK AND IHC 

Cells from each of the cell lines were made into cell blocks for 

immunohistochemical (IHC) staining.  Control cells (MCF-7 and MDA-MB-231) were 

grown in the appropriate media as noted above and SUM149 cells were exposed to CM 

for 48 hours.  Cells were harvested following trypisnization and washed twice in PBS.  

5x105 cells were cytospun unto poly-lysine coated slides, air-dried for overnight and then 

fixed in (%?) ethanol prior to Diff-Quick staining.  Additionally, 2x107 cells for each cell 

line were fixed in 10% formalin for 16 hours, pelleted by centrifugation and embedded in 

paraffin, as previously described (201).  Cell blocks were sectioned and used for IHC 

staining.   

 

 

MAMMOSPHERE 

SUM149 cells cultured in monolayer were exposed to CM for 48 hours as above, 

trypsonized, washed twice with PBS to remove serum and resuspended in serum-free 

media containing FGF-b, and EGF “mammosphere media”, as previously described (161, 

202) and cultured for 6 days prior to counting.  Conditioned media was not added to the 

mammosphere culture.  
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XCELLIGENCE REAL-TIME CELL ANALYSIS 

To test the changes in migratory and invasive capacity of SUM149 IBC cells, cell 

migration was quantified with the xCelligence Real Time Cell Analyzer Cell Invasion 

Migration (CIM)-plate 16 platform (Acea Biosciences, San Diego, CA) using FBS as a 

chemoattractant for SUM149 cells.  The CIM plate is essentially a Boyden chamber that 

measures increasing impedance on the lower surface of the semi-permeable membrane as 

cells migrate into the lower chamber.  To ensure that chemoattractant factors in the CM 

did not affect migration, 25% CM was placed in both the upper and lower chambers.  The 

CM was diluted with serum-free IBC media in the upper chamber while the lower 

chamber used IBC media supplemented with 10% FBS.  Serum free media in the lower 

chamber was used as a negative migration control.  Cells were suspended in the 

appropriate media and added to the upper chamber as per manufacture protocol.  

Impedance was measured on the receiving surface in the lower chamber as a measure of 

cell migration and normalized to a Cell Index with RTCA software version 1.2.0.0909 

(Roche Applied Science Indianapolis, IN, under license from Acea Biosciences, Inc., San 

Diego, CA).   
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